

USERS MANUAL

Level Il BASIC Language

#& INTERACT ELECTRONICS INC.

P.O. Box 8140 « Ann Arbor, Michigan 48106 « (313) 973-0120

PERSONAL COMPUTER
RETURN AUTHORIZATION FORM

9 CUSTOMER NAME SERTAL NUMBER

ADDRESS DATE OF PURCHASE

CITy, STATE, ZIP PURCHASED FROM

' REASON FOR RETURN: (PLEASE BE SPECIFIC)

THE FOLLOWING QUESTIONS MUST BE ANSWERED:
1. Ddd you receive all the items you expected? 1{ not, what was missing?

2. 18 there any apparent physical damage to any item? 1§ yes, please explain.

3, Did unit function properly immediately aften nemoval {rom its packing carton?
1{ not, what doesn't wonk?

4. How Long was unit aunning before it failed?

5. Have you tried to Load all tapes supplied with unit?

6. List all tapes that failed to Load or run properly.

Signature Date

v NOTE: THIS FORM MUST BE FILLED IN COMPLETELY AND RETURNED WITH UNIT BEFORE ANY
'

REPAIR WORK WILL BE DONE. PLEASE RETURN ALL ITEMS RECETVED.

1-811K

When LEVEL Ii BASIC is first loaded, the RAM not occuried
by BASIC is not cleared. This allows you to switch back
and forth between BASIC and Interact's program editor
without reloading your program. If you have no program
statements in memory when you load BASIC, you must type
NEW to clear the RAM or you will get OM (Out of Memory)

errors when you try to input commands or statements.

Copyright 1978 by Microsoft, Inc.
All rights reserved.

© 1979 by Interact Electronics, Inc.

)

2-2

w

'.AJL,UW
w N

CONTENTS

Tutorial
General Guidelines

Introduction to this manual
a. Conventions

b. Definitions

Modes of Operation

Formats

a. Lines

b. RFEMarks

c. Errors

Editing - elementary provisions
a. Correcting Lines

b. Correcting Whole Programs

Statements and Expressions

Expressions
a. Constants
b. Variables
C. - Array Variables - the DIM Statement
d. Operators and Precedence
2. Logical Operations
£. The LET Statement
Branching and Loops
a. Branching
1. GOTO
24 IF...THEN
3. ON...GOTO
b. Loops - FOR and NEXT Statements
c. Subroutines - GOSUB ard RETURN Statements
d. Memory Limitations
Input/Cutput
INPUT, INSTRS
Jeovstick input
. PRINT
. OUTPUT
PLOT
WINDOW
DATZ, READ, RESTORE
h. CSAVE, CLOAD

0 oo

Qa 0o o

Functions

Intrinsic Functions
User-Defined Functions - the DEF Statement
Errors

4. Strings

4-1 String Data

4=2 String Operations

a. Comparison Operators
b. String Expressions
c. Input/Output

4-3 String Functions

5. Lists and Directories
5«1 Commands

5-2 Statements

S=% Intrinsic Functions
5-4 Special Characters
5=5 Error Messages

5-6 Reserved Words

Appendices

A. ASCII Character Codes

B. Speed and Space Hints

(GE Mathematical Functions

D. Using the Cassette Tape Unit

E. Converting BASIC Programs Not Written for the Interact Computer
F. Sample Programs

G. " TONE Parameters for Generating Music

0. TUTORIAL

This section serves as a brief tutorial for those who are unfamiliar
with computer programming. Important terms are defined and illustrated,
and some short LEVEL IT BASIC exercises and programs are presented.

The reader is encouraqed to load the LEVEL II BASIC language tape and
experiment with the examples, exercises and sample programs in this

section before continuing with the rest of this manual.

0.1 Computer and Programming Concepts

Your linteract Model One is a true computcr. Although offering somewhat.
smaller capacity than many usced in business and science, vour Model

One possesses the same computational and logic carabilities as these

larger machii~s. By giving wvour Model One promerly-stated instructions

you =an use it to perform an almost hmitless number of tasks tc help

you and your family learn new skills, manage your home: or your own business

and have fun!

It will bhe casier for vou tc program your Model One if you have a basic {

unders:anding of how a comjuter works. Inside ycur Model One are two

comporents of primarv interest--the central processing unit (CPU) and
memory. Thes «PU carries out your. instructions when you give your Model

Jne a command Oor use it to run a progr«:i. Memory is simply a place for
the CPU %o store your imnstructions and data. Let's look more closely

at each of these comporents and their importance =o you.

——

The CPU works on the principle that an electricval current may . on or otf, just
as a light switch may be on or off. We can represent “"on" with a one and "off"
with a zero. The CPU circuitry itself is desicned to produce certain results such
as addition and subtraction when fed combinations of on/off (0/1) pulses. One
way to program a aonputor, then would be to give it the right series of 0's and
1's and get back vour answer in 0's and 1's. How teﬁious and cumbersome that
would be: Fortunately, no one has to program a computer that way. Onr your Model

One computer vou usa the BASIC programuing language instead of 0's and 1's.

Your LEVEL II BASIC language tape is really an internreter. When loaded
into vour Model One it allows you to enter words ar.i phrases that are
easy for you to read and understand. The intorpreter translates your
words and phrases into the ‘right scauence of J's and 1's ta aive vour
instruvctions to the CPU in a languagg it can understand. 1t olsc
translates the computer's answers from the computer's languase--3's and

1's-~into ours.

When you use BASIC onyour Model One you give the interpreter a list
of instruaction which describe how the computer is to accomplish wour
desired task. Usually your instructions will describe what the CPU
should do with information that you provide. The information may be

numbers or text and is called data. The CPU needs a place to store

your instructions and your data just us you nced a file folder, drawer,

cabinet or whatever in which to keep your rccords. This storage place

is called memory. Certain instructions and data that your Model ne

always requires regardless of the task are stored in read-only memcry (RGM) .

This section of memory is protected such that it cannot x¢ changed or

cleared. Your Model One also has random-access memory (RAM). This is the

space -available for the LEVEI. II BASIC interpretrr instructions awid your

programs ané data.

The RAM is like a large shelf with many empty, unlabelled boxes. When
you place data intc RIM you need a way to explain where to put it and
where to get it when ycu need it again. To accomplish this you give the

data a name called 2 variable name. The interpretor uses the nam: to

labal a "memory box" called a storage location in which to jput your data.

The interproter aiss mikesa ncote to itself ubout where th box car e
fcurd. When you wan® to put something else int~ the storaje location--
or take scmething cut of it--you use the variable name and the interpreter

tells the CPU where r find it.

In LEVEL I1 SASIC you may choose variable names of any length, as long

as each Eejins with a letter. Many people like to choose names whizh are
indicative of the data to which the namee refer. Hewever the intervreter
only recoris ?hevfirﬂt (ANG) chdrartérs i the name. Therciore if you use
longer names, make sure that each name begins with a different combinaticn

of two charaonors to avold confusien about which storage location you want.

g ——

T

*

0.2 Direct Mcde Tutorial

Now that you have a basic understanding of how your Model One works, let's
look more closely at the BASIC vocabulary that your LEVEL JI interpreter

can translate. The interpreter can work in two modes of operation. You

may give it an instruction to be carried out, or executed, immediately.

These instructions are called direct mode commands. Or you may give it

one o more instructions to be filed away and performed late: at your command.

These instructicns are called indirect mode statements. If you type in

a line number and then an instruction, it is stored as an indirect state-
ment. If you type in the instruction without a line number, it is executed
immediately as a direct mode command. Wo will begin in direct mode. You
might want to load your LEVEL IT BASIC language tape now, anc¢ try the commands

presented below.

After you load your tape and the computer displays the "OK" message, clear
_yoﬁr TV screen by typing |

CLS
followad by the 'CR' key. 'CR' stands for '"carriage return". The
interpreter does not do its translation until you type a CR. Everything

you type into your Model QOne should end with a CR. If you type an incorrect

letter but have not yet typed a CR, simply backspace over the error and
it will disappear. Then type in the correct letter and continue with the

line from the point of error. If you wart the whole line to be ignored

so you can start it over and if you have not yet typed a CR, hold down
the Control key and at the same time type a U. The line you ware typing

will be igriored by the computer but will stay on the screen.

-

Now let's input some data to work with. Type
LET A=5

LET 2=3

A and B are variable names which identify storaye locations in meiory.
As a result of these two instructions, the location labelled "A" now
contains a &; the one labelled "B" contains a 3. The word "LET" is optional--

you could also type "A=5" and "B=3" and get the same results.

Now let's ¢ some arithmetic with these data. The PKRINT keyword tells
the computer to diéplay thinas on the TV screen. What you type after
the PRINT t‘L;s vour Mcdel CGne what to display. Type

FRIN'T A+B

PRIRT A-B

PRINT A*3 ("*" mcans "maltiply")
PRINT A'BE (displayed as A/EB)
PRINT A" B (" " means "to the power". Here this means 53.

To produce tnis symbol on the screen, use the
up-arrow above the + sign.)

Your sessicn should appear on your screen like the listing belcw. In the

listing, what you type has been urderlined; what the computer prints is
not. No underlines actaully appear on your screen.

DK

PRINT A+B

8

OK

PRINT "‘A-B

2

OK

PRINT A*E

PRINT A/B

1.60667

Tou may specify formulas

wichald

ir, order:

i. First it pe

_. Next it does

4Qcross your

l’:’.{um;.l:l. (AR

%2

must be taken because

TOYM

111
ad 2

rorm

Pirst multiply 5*2

2=3L 2

First souaro

threc

for calculation which zre gquite cory

s all ax;

mulEiplid

ula.

To

the Model

OCE dr i Thame

cation and

Thern

onentiation (a T n,

Jdivision

LAy n e

ol

wd bl T

L1¢ ope

13.

it

Uan

ot 6

- 3 o by =
to right

Now calculate and fill in your -.answers tc¢ the problems belcw using the
above rulesin your calculations. Then check your answers on your Model

One using the direct mode commands listed in the teble.

Problem Your Answer BASIC Direct Moda Command
A=3 BsY Cc=R

3%4-23 PRINT 3*4-2 "3
p2p-C _— -

2]

2:4%5 - DRINT 2:4*5

ARG g PRINT 4*7:

3]

¥ou g sshmgee dhe comauter's standard order effeworat Loalo vsdag

pares theses. What appears inside the varentheses is calculated fiict.

Exar, 1cs:

Fi¥ras. g5k aid.% o -t 8. Thor multiply by 2 Lo uct 16,

T c LLlS W Vsl v odey <3 Y
~ - -
» . i 1 8 - - v 3 -1
r. cabract 2 oYenn oL gol -1, Souare =1 Sa ged Vi
»
s th wm . ., abwote,
s
B s . s o o o s i O T
NOw .aco2lat < ated FA11 3: 4o o owers e the preoblers Lolow using the apove
ral- 0L Lugi ;. G AE SRt Gl ¢ ar Model L.
N ‘ Y 3 v - + r -~ -,
WSl i bt 5 2 7 1 X 1 3 deky Li o lgase note Thas SOme @f Lig
1 73 o 1 34 14 L © hd " s - - - Pt -~
3iY¥ed .o A I .4 Bt HL T ¢ = : » = O <. 0 T G fe & JXesh : G na cr Latem
e ee m memesiooym o) P e - o - v oo . gr. Tip,wm PRI S S PR S e e A g s-atement
PR oL '} - o T IR [et T EL S s —o oo o & ¢35 H PO B -} e s b TENER ALV SR AR J L - <t n,-

lezs =i s narartor Lo . e EeS R TR e L o e nesas s

2 LA whion necessary, but dees
ot Ul Eas e R 48 RYEL Yo BT

Problem Your Answer BASTC Direct Mode Commanc

(243) *4%2 : . PRINT (2+3)%4%2

(2+3)* (4-2) . PRINT (2+3)*(4-2)
2 .

((2+3)*4) 1 PXINT ((2+3)*4)"2

In the exercises you have done so far, ycu asked the Model One to
calculate an answer and print it righs away. To do this you used the
PRINT command. VYou could just as &asily have asxked 1t to recc:sd a new
storage location aame and store the answer to the calculation. To do
this, you would use the LET command:

LET C=A+4B

L=T D=A-B
and so ¢.x. The Model One would ccmpuate the answers and store them fox
later us:.in printing and making ctncr calculations, using the names von

give to label the storage locations which contain the results.

There are several ways in addition to the LET command tc put data into
remory. These other methods are not fully discussad here. You are

-

encouraged to read about then: in section 2-3 oI this manual ai.2r yvo:

are comicrtable witn the material in this tutcrial sect.in. Some

methods for inputting data are sumracized below:

1. Data may be loaded into memory from DATA statements using the

READ. command. The primary advantage “o the READ. . .JATA combina-

tion is that all your data valu=zs appear irn ore list that you

gan easily locdte, verifyianduchange.

1 When more than one set of parentheses appears, the inside of the
innermost ‘is evaluated first, then the next innermost, and s> on.

2. Data may be accuepted frem the kevboard while an indirect mode program

is rurning using the INPUT statement or the INSTR$ function.

This

1llows you tc interact with your program as.it runs, influencing the

order in which instruacticers are executed and/or providing Giflerent

data wvalues to use in calculations.

3. Data may be loaded into memory frcm cassette tape using CLOAD*.

4. Data may be accepted in%o memory from the joystick controls using

FIRE, JOY and POT. You can write vour own games usirg these ard other

' statements such as COLOR and SOUND.

0.3 Intrcdwesienito Ipdizest Moda2

Up to this point you have been using your Model Cne in direct wod:.

¥ou typed in commands which were executed immediately. Direct

is useful for quick calculations, experimentation and for cevel

indirect rode programs. This section explores the Model One's

mode capabilities.

0 L

indirect

Indirect m2de is used tc d=fine and execute a series of instructions

called gt toments. Thes2 statements {.:rri what is typically called a

program. The direct mode commands and. operations you used in the

previous section also work in indirect mode. To create and run an

rnode program you:

1. Tyre in the NEW command to tell the Model One to clear

0

for new entries.

its

indireczt

memory

()

2. Type in your instructions rroceeded by .line nwiders. & lin
number may be any whole rumber (integer) between 0 arad 55529,
it is important to rememkeo that unless you tell the computer

otherwise, statements arc executed in line nurmu.:» order. It is

a good idea to separate successive line nunbers by 5 or 10

to leave rcom in case you wont to add lines later on.

3. Wee Ehe LIST command to diwplay.your insrwekions in 1ineln;mber
order. Usiﬁg the LEVEL IT BASIC.Refe:en:e Card or this manual
vérify that your instructiosns are correcrtly antered. if not,
“orrect the errors as follaws:

a. . Lo deletevan entire lime; type the line naber te be deleced
followed by a CR. Altlough the line ma/ renain dls-lave
On your screen by a pricr listing,it has zoen reroved T
your prograi and will not appear in any later listings.

b. 2o change a line, type che line rumber to %o changed followed
b& the entire corregted statement £oi *nat line. Althoush
the line may remain inceorrectly displsved .u pricr listing
on ysur screen, it has been corrsczed In your program and

appear correctly in any later Listincs.

.

wil
c. To «dd a new line, tvyie in an arpropriate unused line nunwer

followed by tne rew statément for thail 1i>. Remauber

wher you pick the ﬁew line rumbexr that st..cments are exzcuted

in line homber order. The new l:ine will automaticelly appear

in its vroper place in any later listing ~f the program.

4, Type in = RUN command to execute the prograi.

0.4 Indirect Mode 'ixample

Let's use the commands from the direct mode section and a few now

to create : DroTram.

Specifically, you want tc f.nd your
4 7J

Admittedly theras .y ko 2ars.T ways ‘¢ compat2 yous avearagls il
a EASIC program fc o rouar Moo One. However, this examrle mokas

exercise. lox deaxring to program in BRSC.

We krow we will ne:l 12 storege locati-ns in which to put chs anm
froMm each c.ecroriv “ili. Wae could na:

However S

wogram will require feower, simpler »

we gse a spesisl veriablie celled an grray variaghle. aAn sovawyr varis

Suprese vou wankt Lo analyze your clzctric b

nnes
1 Yo
Lo S
aY

CHENIOCHETSNENE RS EsEnE, o .. the 2xaple helow. You

_— " . - - - 3 " " N ,L: g
DN stetenant coFwabi che LEVEL II istrrpreter. mow many .oa@tions

"(y Jué :c.v-:',a6 pick: ouvT one o-f the loca ooy

:T&'f"ﬂ.mcn*. i -) ;

Serias.

For our-uz .iity a:a 2By we meud 12 Trrakiens for bthe elechric
which we will call L. To s cTs we ise the

When Fes waaik e

I"\. +lg. DIM

l This created twelve BD slots which we may reference individvally using
the subscripts 1,2,...,11,12 to make the names BL(1), BD(2),...235(11),

BD(12).

Now get out your checkbook or other records of vour electric bills. Or
use tne numbers provided in the example in your prograr. First clear
the TV screen with the CLS command.. Then type a NEW command to tell
the Model One that you will begin typing in a new progran. Type in the

first part of your program as follows:

Statement - Explanation
10DINM BD12) Reserves 12 storage locations Tor

electric bill data

r 20pL(1;= 75.86 ‘ Statements 20-130 wubts youz elac-
' 3DBD(2)= 79.13 ' tric bill data into the 2 BD
40BC(3)= 63.32 storage locatiocns. If you wins
50BD(4)= 25.58 te use your own datz, substituts
60BD(5)= 20 1€ the amcunt of cr2 of your “ilis
TJOBD(6)= 11.59 - for each of ti.o example amounts.

BUBD(7) =g 0.02 -
90BD(8)=+11.43
100BD(¢) = 18.29
110BD(10)=29.74
120BD(11)=46.66
130BD(12)=57.92

Now to compute the average bill, we'll neec o add un BD(1Y thro.igh
BD(12). tiere's whorc using an array variable helps us save time and effort
telling the computcr tc add the twelwve months of ‘¢lect:ic bhills. An

easy way to statce these lnstructions is to usce a DA, ..HUXT locwn. A loowm

defines & series of instructions which are te be perfo red several® timas.

e e
ﬁ A control variable s used to specify how many times & loop should be
= .,

performed.
mn———

i
[89]

Examples

1. FOR I=1 TO 12

The control variable in this loopr is named I. It is common programming
practice te use I, J, K, L. M or N as names for loop control variamles.
?his FOR statement defines the begihning of a_loop which will be performead
12 times--once for I=1, once for I=2 2ad so on up to and including I=12.

2. This example shows an entire loor:

10DIM A(10)

207OR I=1 TO 1C

30PRINT A(T) ' : :

4INEYT 1
Statoment 2 reserves ten storage locaztions fcr the arr=v wvarieble name ! i.
The3e are referencen individually as 201), A(2)...A(2) . 7{(12). Statement
20 aefipas the beginnine of a iopp which is performed ten times--cnce
for I=1, cnce for I=: and =0 on up to and including I=10. Statament 20
is "inside the lcop" z=zn it w.11 be execcuted ten times. The first time through
the loop. statement 3C prints the dat: stored in lccation A{1). The
second time through the lcop, it prints the data in A{2). Ths lco» ccntinues
through I=1C, .prin-ing the value from one location in the R a2rrav =zach tine
thrcugh the loop. Statement 43 defires the end of the lccp.

In our electric bill analycsis, we can use a loor which i-= pgrforned Twelve
times to add up the twelve months of eieétric bills. =zach time through
the loop, we add i- =znother month's data. Type in the following statements,

addinc them te your —izara:

Statement . Explénation
14CFOR I=1 T2 12 Initiates lcen to be performed 712 times.
150SUM=SUNA23D (I) Each time tinzcugh the loop another

monith of electric bill data is adcéed
into the rurring total which is kep-:
in & location called sUM.

160NEXT I Defines th2o end of the loop.

Now all that rerme.nz is

Type in

T70?2"AVERAGE="; SUMI 12

for your question mark.

average.

cabstitates the wori PRINT

L
exanple:
CBVERAGHE=00G.72
~eu's roeview the whole prooram., To see a List or ts YO fave
tvoed in, usa thes LI8T command. Your programn statemencs will hecin oo
appear o the surean in Lice norber order. y y ‘ : .
and then will peusc. To continuz the iisting from where it 1- 0L off, wedt fFess S.
The listiin will sontina? .

from the line at whach it was stopred by the

now and compare your program with i liscis

a1 low:

‘ontrol/ 8. LIST command

T

10DIM BD(12) {Note: If you supplicé vour cwn Zata, your

20BD(1)= 75.36 electric bills should appear in lines 20-130
308BD(2)= 792.13 substituted for the numbers shown in this
49BD(3)= 60.22 S listinag.)

530BD(4)= 35.58 .

B0BD(5)= 23.16 -

708D(6)= 11.59)

80BD(7)= 10.02 —

9CED(B)= *1.43

100D (9)= 17.29

110BD(10)=:%.74
1203D(11)=45.66

130BD(12)=157.92

140#0R I=1 TO 12

150SUM=STUM+LD (1)

160NEXT I

170FRINT "AVERAGE:":3UHM/12 {The Mcdel Cne automatically subsci-utes “RINT

for ? ir your listing.)

If there are errors in your listing correct them using the rethods descoribed
in the frevious section. Wien the listing appears to . carroc:, RRSSEE:
your progran by Lwoeing

SUN

Whit was your average electric bill?

0.5 Review

Before going on, let's pause a minute and summarize the things we have coverec

so far. If you are unsure about thsz meaning ¢i any of the words, symbols

or rules below you are encouragedto experiment some mor:e with .twe exercises

and examples in sections 0.1-0.4. If you are coumfortable with the lists,

go on to section 0.6

A. Computer Concepts and Terms

array variable

) loop
Central processing unit (CPU) . m&mory
control variable modes of operation
data program
direct mode commands RAM
execute =OM
indirect mode statements zrtorage lccation
interpretexr string
line number vaolable name
B. LEVEL II BASIC Words
CLS LET NEXT PRINT o» P

DIM LIST NE rU
FOR. '
C. 2ditting and Coatrol

. T hen CR
backspace clear’ tastFigure deleting - Type line A

a line .
Control/Q stavts 1isT adding & line - 7Tppe line # Hen new st Tement (new [ine *)
Control/3 sMe< /:s changing a line . Ype line # Fhan new s tofamend”

COI’IE‘[Ol,/U iehaves ul\olg)ine
D. Aritametic Cperators and Rules

= addition

- negation, suotractiasn

* multiplication

division (prirts as a slash mark)
exponentiation

oo

Rules for order of operaticn, use of varentnescs

Qh?ﬁ:v\j ;& ¢) I'S Jéwa. ‘()“’5 €.

0.6 Interactive Input

;n yogr first computer program, vou specified vour data in program statements
like

BD(1)=75.86
When the computer executes this stafement, it =tores one month of 2lectric
bill data in storage location BD(1). As was mentioned,another way to put

data into memory is tc enter it.while the program is running. To <o this,

" the INPUT statement is usad.

Let's start writing a new version of the electric rill mrogram The

first change is to make the input interactive. Thet is. use the TNEIT
statement sz that ycu can enter data when the comvuter asks for .t while

the program is running. INPUT is not used as a direct mode cammani vt

only as ar ’ndirect wcole statement.

The f{orm of the INPUT sztatement is
INPUT ["strinc';]-<variahle name>

This way of showing the INPUT =ztatemen% is called a genexal form bzcause

it describes many ways to use INPUT. The square brackets are used to
show options. That ig, vou may use TNPUT without using a string in guotes
and a semi-colon. IThe angle rackets derote a paraﬁeter. When you use

a statemert, you susstitute @ value for the parameter that is appreopriate
for your s acific task. In the case ¢ INPUT you would supply the name

of the variable you want to enter in place of <variable name>,

' Examples
a. 10 INPUT A

When this statement is executed the Model One prints a question mark
on the TV screen. Then it waits for you *o type a value followea

by a CR. It stores the value you type in a storage locatica labelled

A.

H. 10 INPUT "NUMBER";A

The Model One prints
NUMBER?

and wailts until you type in a value and a CR, then stores the valu

)

in a location named A.

r If you supply an optional string and a semi-colon in an INBUT statement,
the Model One prints the string then a guestion mark then waits for ycur
input. If you1 don't use a string it princs 2 gua2sticn rark only, then
waits for your.input. . In either case, it stores the date vou enter in the

storage lccation you name in the INPUT statcment.

Now clear your TV screo:, tyoe in a NEW coxmard and start your new home

budget arnalysis program by typing in the statzments 1iszzed below.

Statemer: : Eﬁblana:iog

10DIM (12) Reservsas 12 storage locations

23FOR I=1 TO 12 Initiates a loor to bo performed 12 times
30INPUT (I). - Frints a guestion mark and accepts

data for crne location in the D array
eazh time the loop is performed.

40NEXT I | Closes the loop initiated by line 20

When using interactive input to enter a lot of data it is usvaily a good
idea tc give yourself a chance to fix any mistakes vou may have made. Let's

do that as follows. First, we'll print out all twelve numbers 2long with a

sequence number to iderntiiy each. Then we'll ask if theore are any changes.
if there are, we'll make them. If not, we'll compute the average bill.
Before we enter program statements to do this, we'll need to introduce two

new concepts—--conditional <lauscs and subroutines.

0.7 Conditional Clauses

When writing gomputer programs it is trequently necessary to test o see

ifha particulaxr conditionr holds true or not. For example, in our editing

example we will want to ask if there ar: any chnhqes: If the oaswor

is "yes," we'll edit therm. If the answer 1s "no." we car wo o0 and compuhe

our average. That 13, we need to test the answer to a2 qguestion o goo 1F

it's a "yes” or a "no." 2thor kinds ¢f kests that you mav need to make aroe
a. 1Is this date value —uual to that data value?

b, Is it Jess than 2 certain vaiuae?

=.. Greater tha 7

To make these kinds of tosts vou Use symbols called relatlional o

That's a fancy nare “or something familiar:

Relational Lpwratcr Meaning

= egqual to
<> not ceual tc
< less than

greater than

“=Qr=7 less than or equal to
»=or=- - greatey thoan or emaal to

Relational operators are used to form conditional clauses. The form

of a conditional clause is

IF<expressionl><relational operator><expression2>

Examples

a. IF SUM<O0
This clause tests to see if the value storzd in the 5UM locaticn is
negative.

b. IF A>=B
'This clause tests to see whether or not the value in iocation A is
greater than or equal to that in B.

c. IF A"2>10*B
This clause tests to sec if the sguare <f the value in A is greeter
than 12 times the value in B.

A conditional clause is either true--has a value equal to -l--or :tT is

false--has a value equa} to zero. If the clause is true, ycu wani to

ds one thing. If it is false, you want to do something «=lse. There are
several wazys to us: a conditional clause to control what gets Jone next.

The one we will use is the IF...THEN statement:

IF<conaition>THEN<statements>
If the cerditional clause yecu substitute for <conditicn™ 1s trua, the
Model One performs the statements following THEN. If the clause

it goes to the next line, skipping the statements atter THEN.

N)
]

Example

10IF A<0 THEN PRINT "ERROK":STOP

20C=A/B

If A is less than zero the Model One will display the word "ERROR” on the screen
and then stop. If A is greater than or equal to zero, it will compute

A divided by B and store ths result in C.

Note the colon in line 10. You may use a colon to put more than one
BASIC statement cn any line. You may put as many statements on a line
as you want as long as they are separated by colons and the total length

of the line is not more thar 72 characters.

iet's expand cur rrogram row to include displaying the input data, askino
if there ar= changes, *testing the answer, and making a decision basead

on the answer. Type in the following statements, addirg them to your

program:

Stetement Explanation

50FCR I=1 TO 12 . Initiates a loop

60PRINT I;SPC(2);D(I) " Frints current value of I (our
sequence number) then 2 spaces then
the value in D(I) each time

- through the loop.
70NEXT I _ Closes the loop

bhord LA - g
80INPUT "CHANGES";A$ 5l RS FPrints "CHANGES?" and waits for
— S %

DS e 42Tl ™™ 7 3n answer o store in AS

90IF ‘A$="YES" THEN GOSUB 200 Continues at line 200 if answer was YES

[y}

In line 80 you recuested that the data input be stored in a location

labelled A$. Variable namcs that e~d with a dollar sign are called string

variables because they label locations for tex:t {ietter) data instead

of numbers. The answers "YES" and "NO" are text, so we need a location

with a label ending in a dollar sign.

In line 90, you stated that if the answer :is "VIS" +the Model One
go execute a subroutine beginning at line 200. The nexs section
subroutines and develops the one we nreed for our program.

Now enter these statements:

Statemzrnt Explanatigﬂ
1U0FOR I=1 TO 12 Initiates loor to total 72
110LET SUM=SUM+D{(I} ‘ Accumuiates total.

1208NEXT I - Closes loop.

130PRINT "AVERAGE=";SUM/12 Princs average pill.

should

explains

140END .o Marks the end of the program.

These statements are performed only after the data arz verified to be co

That is, only after you type NO wher. asked "CHANGES?T"

0.8 Subroutin=s

A subroutine is a series of program stacements contained within the rest:

s
L

rec

of the program. The subroutine statements usually perform a task that is:

a. Not really central to the task at hand. For exemple editing

entries to INPUT statements, although scmetimes very necessary,

is not central to computing an average. Aiter 2ll, if we ware

perfect typists we wouldn't need to edit cur input at all!

Whon the Model One ¢x~cutes line 20, it sk

b. Performed at several times at different points in the program.

Rather than type in the same series of statements at ea:ch point

they are needed you type them in once

to them as a subrcutine when vou need

To initiate executicn of a subroutine, you use

GOSUB < linenumbar:»

where <linenumbéer> gives the first line of the

Model One automatically skips to that line and
processing line by line until it finds a RETURN
causes the 'Model One to ¢o back to the statemen

GLSUB.

Example

50GOSUB 60:PRINT "DONE":3TOD
50FOR I=1 TO 10

70PRINT T

80NIXT I

90RETURN

[

pe a
begrnning at line ©f0. '“he subroutine djsplays
the word DONE and then stops.
Let's write the aditing subroutine tor our prbq
you already have the statemont

S0IF AS="YES" THEN GOSUR 200
That means the subroutine must start ot linoe 20

routine is as follows:

instead. Then you refer

chem.,

the statenaont

subroutine series. Tho
continues from that point,

statement. The RETURN

T oimmediatelyv after the

utomaticnlly to the subrontine

the numbers 1 othrough 10

on the screen one Ly one. Tnen the Medel One coes back <o lire 50, prints

Yam now. TR YOur progran

0. The strategy {or the sub-

In the main program we printed & l1ist of the input data items with -the
I value which ﬁells where each item is stored in tke D array. So we'll
use that same I value to identify which moir:th of data needs to be
changed. Type in the folliowing statement, wﬁich gives you a chance to
type in an I value when the subroutine is run:

200INPUT "SEQ.NO.";I

The following statement allows you to enter tre new data value for 5(I):

21CINPUT “"NEW VALUE";D(I)

Now we: need to know if there are any other changes. If there ars

we want to go beck to line 200 and get anotﬁer value for I:

220INPUT "MORE CHANGES'";B3

éBOIF B$="fES" GOT0 200

240RETURN

Line 230 uses the IF...GOTO statement. The IF...GOTO is very similar

To the IF..;THEN. Th2 IF...THEN gives staczements to perform if *he stated.
condition is true. IF...GOTO gives a line number at which to continue

1f the stated condit:on is true. If the ceondition is false, the Mcael
One continues with the next iine after the IF...GOTG. In this case,
unless you enter Yﬁs to thé qpestion "MORE CHANG&S?“ tr.e Model One returns
to the body cf your program at line 100, which follows the GOSUE. If

you answer YES you are asked for another I value to specify another data

value to change.

"

¢

Let's look at the entire home budget program. Type a LIST ~ommand and

use Control/S and Control/D as needed to stop and start the listing.

your statements with the listing below:

T0DIM D(12)

20FOR I=1 TC 12

30INPUT D(I)

40NEXT I

50FOR I=1 TO 12

60PRINT I;SPC(2);D(I)

JONEXT I

S80INPUT "CHANGES";AS

®0IF AS="YES" THEN GOSUR Z0C
100FOR 1=1 TO 12 ’
110LET SUM=SUM+D (I)

120NEXT I ‘
130PRINT "AVERAGE=";SUM/12
140END
;200INPUT "SEQ.NO."; I
210INPUT "NEW VALUE";DI(I)
220INPUT "MORE CHANGES" ;RS
2301F BS="YES" GOTO 209
240RETURN

Your pregram performs the following tasks:

-
>

s running, typing a question mark for each bill amount.

(=

puts the data into the array labelled . which has 12 slots.

=

with the positicn of the numkber in the D array.

ccepts 12 montns of electriz bills frum vyou while trha program

Check

2. . Next it disvlays the 12 numbers you enter.d on The screoen aleny

3. Next it asks you if yon wanut te maxke anv changes. TL vou answer

YES, it proceods to the coditing subroutine. If you answer

NO (or anvthing oxcoept YES) it totals tie 12 nur

g
£
2
n

.

tre average then stops.

¢1rs and prints

4. The editing.subroutine asks wiizh item you want to change by typing

SEQ.NMTJ? thean

NEW VALUE®

to get the correct cntry for LITY, Ther it asks if therc
changes. L£ you answer YES it asks for a mew seguence number

argc norea

and a

value. Any other answer causes the Model One to return to the main osrsgram,

compute the sum, print th2 average and stop.

If your program statements appear correct typs in a RUN command and try out
the program. If there are errors use the mechads described in saction

0.3 to fix them, then type the RUN command. Wwhiie running the program

make sure to make at least cne mistake so you can try out you:s =2diting
subroutire. After you are Jdone experimenting go on to, the next section

to see how to save your program on a cassgtte.tape. Bez sure not to tuira
yod} Model ‘®ne cff ‘until you have saved your program on tape. Wien .ou -—urn
thie Model One off, whatever data values and prcgram statements «re in the mem-

ory are lost.
0.10 Saving Programs on Cassette Tuje

You may save youlr program on a blark Data Tap= by following the steps listed

Lelow:

1. fnsert a blank Data Tape intc the cassette drive. Depress the REWIND
putton cn the tape unit.

2. Type in a REWIND commard. When the tape finishes rewinding nress any
key on the keyboaéd to indicate that rewinding is ccmplete.

3. Depress the REZD and WRITE buttonz simultaneously o the tape unit.
Pick a name up to five characters long fcr ycur pregram. vie 1n the
word CSAVE--for Cassette Save--followad by ycur program namne in quotes;
for example

CSAVE "BDGET"
The tapelshould begin to turn as your program is written onto the wape.

When the Model One types "OK" your program is saved.

26

To load the program from tape latér on, follow the steps listed below.
Please note that whzen ycu load a program from tape it automatically erases
any program statements and data values currently in memory.
1. Load the LEVEL II BASIC language tape if you have not already done so.
2. Insert the Data Tape containing vour program. Denress the REWIND
cassette button and type a REWIND command. Typ2 any key on the keyboard
when rewinding is complete.
3. Depress the READ cdssette button. Type ir the word CLJAD--fcr Cassette
Load;—followed by your progyram name in quotes, for example
CLOaD "BDGET"
4. You should hearrthe be2eping sounds of a loading program. To Take
certain your program 1naded correctly type in a LIST command after
the Mcdel One disélays the "OK‘-I message. Check the listing to make sure
it aprears complete 2nd correct. If so, type'a RUN command tc execite

your program.

0.11 Raview

Let's review what we have coered since section 0.5 wher we did the last
review. If you are unsure about the. meaning of any cof the words, statements
or symbois listed below you are encouraged to experiment some more with
fthe.exercises and examples in sections 0.6-0.12. If you are comfortable
with the lists, try some of the sample programs in Appendix F or continue
with the rest of this marual.

a. Computer Concegpts ant Terms

conditional clause parameter
general form relational operators
interactive string variables

options subroutines

LEVEL II BASIC words

CLOAD I RETURN
CSAVE 7. ..GOTO 52C
END "IF...THEN STOP

- GOSUB - INPUT

. Relational Operators

= equal to) <=Or =< less thar or egqual to
> not egual tc © >=or=> - greater than or equal
< less than

> greater than

Other

-Use of colon(:) to separate multiples statements or. one ling
-Saving prograns.onr tape, loading vrogorame from tape
~Usirg "?" as an abbreviation fcr "PRINT"

1~ GENERAL GUIDELINES
1-1 Introduction to this Manual.

a. Conventions. TFor the sake of simplicity, some conventions will be
followed in discussing the features of the BASIC language.
1. Words printed in capital letters must be written exactly as shown. These
are mostly names .of instructions and corsands.
25, Items enclosed in angle brackegs f<>) must he supplied as explained :in the
text. TItems in square brackets ([]) avre optional. Items in toth kinds of brackets,
[<W>], for example, are to be supplied if %he optionél feature is used. Items
followed by dots- (...) ‘mav k> repeated or deleted as necessary.
3. ° shift/ or Contrgl) followed by a letter means the character is tyned by
holding down the Shift or Centrol kev and typing the indizated le%te:r.

4. All indicated. punctuatizcn must be supplied.

z. Definiticons. Some terms which will beccrme imporitant ars as £2ilows:

Alphanumeric character: all letters and numerals taven together ares called
alphanumeric charaéters.

Carriage Return: Refers to the kevw labeled 'CR' ¢r the termiral which causes
comﬁands, statements, or data to bé entered into memoryv, and priﬁting to pegin on
a new line on the screen.

Command Leveli: Affer RASIC prints NK, it is at the command level. This
me;ns it is read& to aczept comrmands.

Commands and Statements: Instructions in FASIC are loosely divided into two
classes, Commands and S=atemen=s. Commands are instructinns rormally used conly in

direct mode (See Modes of Operation, scection 1-2). Some cotmands, such as CONT,

may only he used in cd:irect mode since they have no meaning as program statements.

29

But most commands will find occasional us: as program statements. Statements are
instructions that are normally used in indirect mode. Some statements, such ag
DEF, may only be used in indirect mode, kut most may also be issued as direct mode
commands .

Edit: The proéess of deleting, adding and substituting lines in a program.

Integer Expression: 2n expression whose value is truncated to an integer.
The components of the efpression need nct be of integer type.

Pixel: A pixel is the unit of measure for the TV screen. The screen 1ig
approxiﬁately 112 pixels wide, and 77 pixels tall.

Reserved Words: Some words are reserved by BASIC as statements and

rn
(o]
tg
[
02
[

commands. These are called reserved words because they may not be used in variable

or function names. Ss& section 5-6.

String Literal: A string of characters enclased by cuwotation marks (") whicn
is to lz¢ input or ocutput exactlv as it agppears. The guotation nmart.s ire not part
2f the string literal, nor may a string literal contain guotaticn xar<s. (""¥I,

THERE"" is not legal.) Blanks within the quotaticn marks are significant.
Type: The word "type" to refers tc the process of entering informaticn into
the computer using the kayboard. The user types, the computer prints. "oata tyne”

ref2rs to the classification of data as numbers or strin

W2

[

1-2° Modes of Cperation.

BASIC provides ifor obcratjon of the computer in two diffsrent rodes. In the
direct mode, the statements or commgnds ars exacuted as they are enterad irnto tha
computer. Fesults of arithmetic and logical cperetions are displayed arnd stored
for later use, but the instructions themselves ar=z loct after execution. This mcde

is useful for debugging and for using BASIC in a "calculator" mode for quick ccmpu-~

‘tations which do not justify zhe design .und coding of complete programs.

'

In the indirect mode, the computer executes instructions from a program

stored in memory. Program lines are entered into memorv if they are preceded by

a line number. Execution of the program is ini%iated by the RUM command. Lines
are always executed in numerical order, regardless of the order in which they are

input.

1-3. Formats.

a. Lines. The iine is the fundamental unit ¢f a BASIC proagram. The format
for a BASIC line is as.folicws:

nnnnn <RASIC sti?ement>[:<BAuIC statement>...]
Each BASIC line begins with a line numher. The liné nuber indicates ths order in

which the statements are exccuted in the program. It zl=zo provides for hranching

Line nurbers must b2 in the range £ to &

Wl
win

5)
0

linkages and for editirc.

o

programring practice is to use an increment of or 1 hetiuzen succossive line
numhers to allow for insertions.
Following the line numter, one or more BASIC statemonts are written. The

first word of a statement indentifies the operations to re performed. The list of

arguments which follows the identifvinz word serves soveral =urpcses. Tt can

ol

contain the data or wvariahles which are to he operated upon hy the staterent. In

scme important instructions, the omeration to be performe’ deponds upon conditions

or optiors specified in the list. Each type of staterment will be considered in

)
0
0

detail in sections 2, 3 and 4.
Severzl statements can he written after one line numter if they ars separated

by colons (:). 2Anv number of statements can be Zeined this wav provided that the

linre is no more than 72 characters lony.

pm—

'

b. REMarks. In many cases, a przdram can be mcre =asily understood ii it
contains remarks and explanations as well as the statements of the vrogram proper.
In BASIC, the REM statement allows such comments to be included without affecting
execution of tﬁe Program. The format of the REM statement is as fecllows:

REM <remarks>
A REM statemeﬁt is not executed by BASIC, but branching statzments may link into
it. REM statements are terminated by the carriage retuzn or the end of the line

but not by a colon. Example:

162 RFM DO THIS LOOP:FOR I=17T01f8 -zhe FOF statem=nt will nct
be executed

171 FOR I=1 to 1%4: REM DO THIS LOOP] -this FOR statementc will
’ ' be execu=ted.

c. Errors. When the BZSIC intervretsr detects an error tha: willi cause the
program to b=z term;nated, it praints an errcr messagz. The =srror message formats
in BASIC are as follows:

Direct statement ?X¥. ERROR

Indirect statement ?2XX ERROR IN nannn
XX is the error codé or message (see section 5-5 for & lis% cf errcr codes and
messaées) and nnnnn is the line number where the error occurred. Fach statement
has its own particular possible errors in addition to thé general errors in
syntax. These errors will Be discussed in the description ci the individual

statements.

1-4 Fditing - elementary provisions.
Editing features are provided in BASIC <o that mistakes can be corrected. arnd
features can be added and deleted without affecting the remairder of the program.

If necessary, the whole program may be deleted.

a. Carrecting lines. A line heing typed may be deleted by typing Control/U
instegd of typing a carriage return. To delete an entire line that has already
been entered, type the line number f£ollowed by a carriage return. To correct a
l§ne that is already tvred in,; type the line number followed bv the correct
information. To addé a new line, pick an appropriate lin2 number, and enter it
along with the new informaticn. Remecmker that statements are always executed in
line number order.

b. . Correcting whole programs. 7he NEW command cauzes the entire current
program and all variahles to be deleted. MNEW is geﬁerally used o clear memory

space prior to entering a new program.

2. STATEMENTS AND £XPRESSIONS.

- ..

Expressions.

The simplest BASIC expressions are single constants, -variables and function

calls.

a. Constants. BASIC accepts integers or flcating point real numbers as

constants. It accepts string constants as well. See seciion 4-1. Some examgies

ol
’

of acceptable numeric constants follow:

123
3.141
. B.g436
1.25E+85
Data input from-the terminzl or numeric constants in a program mav have cny nurber

of digits up to the length or & line (se- secticn 1-3a). Howsver, only the first
7 characters of & numker {including tne dccimal point) ere sicnifizant and tha
5% igit is round2d up. There ¢, the command
seventh digit is round:d up Therefore I ormm

‘ h PRINT 1.2345673201253
procduces the following outnut:

1.23457
OX

. Tne format of a number cdizplayed using PRINT or OUTEIT is determined by the
following rules:
1. If the number is negative, a minus sign (=) is printed to the lzft of the

number. If the nuiber is positive, a space is printed.

2. T f the absolute value ofFf the number is an intecer in the vange § to 289999,
it is printed as an integar.
2. If the absolute value of the number is real, arnd ¢osater than or ecual o .7l

and less than or equeali to 8399¢¢Y, it is prirted in Tixed point aotation with no
eéXponent.

h 4. 1f the number dces not fz1l inte categories Z or 1, scientific notation is used.

The fofmat for input and output <f constants in scientific notation is:

MX . Y¥XXXESTT
Where M is the sign of the méntissa and the X's dre the digits of the mantissa.
The E indicates the start of the exponent, the S the sign of the =xyponent, and
the T's the digits of the axponant. The exponent must be between -38 erd +38. Tha
largest number that may b2 representéd in BASIC is 1.7C141%+438,the smallest positive
number is 2.93878-33.

Examples:

BASIC Scientific MNotation ; Exponentiel Notation Nurher
1.5684E+76 | (1.5684)x (18°) 1,558,479
—l.5684.E+ﬂ6 (-1.5684)% (189) -1,358,40C
1.5624E-3 ' 11.5624)x (1073) 0.0015684
-1.56R4E-73 C (-1.5684)y {3073 -0.0015684

In all formats, a space ig crinted ezfter the umber. PBASIC checks to sce if the
entire number will £it cn the current line. If mot, it issues a zarriage roturn

and rrints the who.2 number on the next line.

b. Variables
A variable narme represonts symbolically any number or string which is assigned

to it. The value oI 2 variabl: may e assigned explicitly by the proJrammer or may

D
e
19
=
b
o
o]
h

be assigned as the ralculatiorns in a pragram. R2fore a wvariable is

assigned a value, its value is assumed tc be zZero (numbers) or blanks (strings).
String variables have special rames. Zoee section 4.

A numeric variable name may bhe any length, but any alphanumeric characiers

after the first two are ianored. The first character mist be a letter. No reserved

35

' variables, or arrays. The form of an array variabl2 is as f{ollow

' words may appear as variable name:z or witchin variable names. The foliowinc are

examples of legal and Illegal BASIC variakles:

Legal Iilegal
A %A (first character must

be &lphabetic.) .
21 LET (reserved worc)

The first two characters of all variable names in a program (indirect mode)

or session (direct mode) must be unijue.

€w, ArraY Variables. It is .often advantageous to refer to several variatle
oy the same name. In matrix calculations, for example, the computer rnandles each
element of the |matrix separatelv, but it is converient for the programmer tc

to the whole mﬁtrix as a unit. For this purpose, BASIC providaes subsorinted

u

VV(<subscript> [,<subscript:...])
where VV is a'variable name and the subscripts are integer ecxprassions. Sibscripts

may be enclosed| in parentheses cr saguare brackets. An array variable may have as

many dimensions| as can be definad in a single DIM statement of up to 72 characters.

Subscripts must| be between 0 and 32767.

Examples:

A(5) . The sixth element of array h. The first
elerment is A(g).

ARRAY (I,2*J) The address of this elcment in A two-

dimersional arrav is determined by
evaluating the expressicns in parentiicsces
at the time of the reference to tnc array

x and truncating to intcgers. If I=3 and
J=2, this rerers to ARRAY(3,4)

The DIM statement allocates storage for array wvariables and sets all array elements
to zero. The form of the DIM statement is as follows:

DIM VV(<subscript>[,<stbscript>...])

'

where VV is|a legal variable name. Subscript is an integer expression which

specifies the largest pcssible subscriont for that dimensicn. Each DIM statement.

may apply tj more than one array variaczle. Some examples follow:

. 113 pIM A(3), B(L,1)

The arxray A may contain four values, referred to as A(0), A(l), A(2), and
A(3). The array B dafines & 4 cell, 2-dimensicnal matrix with each element
referenced aF shown:
B(C,1) B(1,1)

110 UT N .
AA(N)

N+1 -<ralue

111
The ay AA is dynamiceily dimensiorned during oreogram execution. That is,
11t*ons are allocated, whpve N is input each time the program is run.

These positions are referenced as AA(0), AA(l), AA(2), ... AR(N).

Any in

- e

eger expression may ‘be used to dimension an array ‘or matrix dynamically.
When the p*ogram is run, the expressior is evaluated, thz results truncated to an
integer valuJ N, and N+1 positions are allocated for. that dimension in the arrayv.
!
If no DIM stgtement has been executed before an array variable is found in a program,
‘ ;

BASIC assumes the variable to have a maximum subscript of 1 (11 elements) for each

dimension in

the reference. A BS or SUBSCRIPT CUT OF RANGE error wessage will be
issued if an‘;ttempt,is aade £o reference an array element.which is outside the space
allocated in Lté associated DIM statement. For example: 50 LET A(1l1)=COS(X) when A
has been dimensioned by 2C DIM A{10). A BS error can also cccur when the wrong
number of dimensions is used in an array element reference. TFor example:

3 LET A(l,2,3)=X when A has heen dimensioned by 17 DIM 2(2,2)

' A DD orxr REDIMjNSIJ:‘\I'HD ARPAY error occurs when a. DI statement for an array is
t

found after

at array ras heen dimensicied. This often occurs when a DIM
statement appiars after an array has been given its defzul=- dimension of 1.

d. Openators and Precedence. BASIC pzovides a full range éf erithmetic
and logical operators. The order of exezution of cperations in an expressicn
is always according tc¢ their precedence as shown ir the takle below. The order
can be specifi%d explicitly bv-the use of parentheses in ths normal algekraic
fashion.

. Table of Prz=cedence

Operators are shown here in decreasing crder of preced:nc:. Cperators listed in
the same entry| in the table have the same precedsncs ané are executed in orider

‘ from left to right in an expression.

T Expressions enclosed in parentheses ()
2. “exponentiaticn. Any nuwber to the zero powcr is 1. Zero to a negative

power causes &| /@ o¥ DIVISION EBY ZEFD error.

3, - negati#n, the unary minus operator
4. *,/ multiplication and division
5. +,~ addition and subtraction
6. relaticnal cperators.
= egqual
<> not equal
< less than
> gxrecater than
< less than or egual to
>=,=> greater than or equal to
7' NOT logifal, bitwise negation
r 8. AND logical, kitwise disjunction
9. OR logical, bitwise conjunction

w
[a gl

Felational operatcrs may ke usad in any expression. Relstionil cupressions have

the value either of Trus (=1) or False (3).

2. Logical Operatiors. Logical operators may be sad for

it manipulation

and Boolean algebraic funciicns. The 2AND, OR, and NOT onuverators convert the

aryuments into sixteen bit, s:ood, twe's comnlament intcacrs

ta 32767. Rfter.the opcrations ave performed, the result is retoorroed in “he sarc

form and range. If the arquinenis are-not in this roengs, o FC L ILLEGAL MUNCTION

e, Ol

CALL) error message will be ' vinted and execution will

- L

-

NEEE

for the logical operators appear helow. The operations ere per lormed bitwise, th

13, corresponding bhits of coach ar

are exanined and *+8 result cempirted one

bhit at a time. In binary opcrations, bit 15 is the most significant bit of the

)
)
£t
)i
#]
.
¥
S

<
Al

ANYTY
AND o

S

—
=
~ -

=
R ke L
s T

OR

NQT

>
‘

= o=
— &
R S

oA

NOT N

Jal

’

S

Truth tables

' The following examples of logical opcrations use the nurkers 1, 2, 4. 1&, anc 63.

The nurbers are written in binary notaticn as follows:

Number . Binary Form

1
10
130 - *

[O XTI S N T

1 10000
63 111111
16 AND 63 2 AND 4 t @

111111 1460
AND 13000 ANRD 10

010000 = 16 000 = 0
15 OR 63 ' 2 OR 4
11111 100
OR 100C0 = 63 OR 10 =46
111111 110
' The NOT operator produces & "onc's complement" of the variacie, 1.e2. ={var.=kie +. ..

2

For example, NOT 0 = - (0+1) = -1, and NOT i = ~(l4ii)= =-2.

f. The LET statement. The LIT statement is used to ascgn & vaolun

[
9]
m

variable. The form is as_follows:

LET <VV>= expressibn
where VY is a variabie name and bthe expression is aay valild 1.5IC arithmetio,
logical, or string exprgssfon. Examples:

w7

198 LET V=X the value of £ is assigned to variable V.
11 LET I=I+1l the '=' sign here means 'is roplaced hy o...'.
That 1s, the vzlue of T is incrementos by 1.
The word LET in a LET statement is optional, sc¢ algenriic eyguetions such As:

12f V=.5%(X+2)

are legal assignment statvements.

40

N\ e Q2 T - g - 3 : il s
A SN Or SYNTAX ERRCR mrssage is printed when BASIC detechts incorrect form,

illegal characters in a line, incorrectlpunctuation or missinag parentheses. An
QV or QVERFTIOW error oours when the result of a calcalation is toc large to be
represented by BASIC's number Tormats. All numberé nust be wititin the range

lE-38 to 1.7Z141E38 or -1E-3% ta -1.7214:.E38
in the /@ or DIVISICN BY ZFRT orror mesSago.

For a discussicn of strinus, string variables and string operations, zee
section 4.
= 2 Branching, Loops and Suhroutines.

a. Branching. In addition to the sevuential excoution of progran lines,

BASIC provides for changing the order of execution. Tnis wreovision is called

branching and is the basis of prougrvammed decision ~aking and loops. The staterments

[

1. GOTO is an uncenditicnal hranch. Tes form is as follows:

10 exceation continues @t line nwmber momoua.

h. Ttz form is an fnllows:

Z. IF...THFN 1s a coraitioral bran
IF«exsression >THEN - mynmmm

where tne exp-ession iz & valid arithmetic, relational or lcgical oxpressicn anna

“h

mmmam is a line numdrer. If the expression is ovaluated as non-zego (TRUE), BASIC

continues at line mmicam. othergise, oyxocutlon resumes of the noxt line a2fter the
IF...THEN statement..

- an alterndate form of the TFP...THEY scatement 1s as follows:

IF “expression ¥TdrM “statemants™
%

where the statements are any BASIC statoments. Fxamples:

14 IF A=1g THEN 4¢: If the expression A=1f is trun, BASIC branches to

line 4g. Otherwiecs, cxecutinsn proceeds at the next line.

. An atternt to divide v zerc results

for hrenching arz the GOV, IF...THIT and O, .. G007 statements.

15 IF a<B+C OR = T

L 5
to zero, execution proceceds at _ine 100, If 5 ls greater than B +

and ¥X=J, than the next progran statement 15 2xecuied.

o FRLITOAT i .y

2 IF X THEN 25: 1Y ¥ 1s not zero, the staverent :rarncthes to line

3¢ IF X=Y THIEN TRINT X T the exupression =Y
zero) , the PHINT statement is oxecutad. Ot ar

L5 I
statement

is not executed. Io elther zase, execuricn corncinues with the line

after the IF...THEN statemsnt.

w
(2]

"

IF ¥=Y+3 G070 39:. Beulvalent o “ir x

3. ON. .. GOTQ provides for another typoe of condit onal branch., JTts ro:
follows:
1

O integer expression>GOTO<list of line numbors:

After the value of th2 expression is trunczted to an inteywr., say I, the

bt
3

fo
2
N
1

causes BASIC to branch to the 1lne whoor number s 127
may be followed by ¢z many line numbors ws wili fit on one lins., T8 :fﬂ
than the number or lin-ss in the list, execudtioun will sentimiwe ab the nelt
the OM...H0TO starcment. 1 nast not e Less than zero o arsater ﬁq;n

or ILLIGAIL FUNCTION CATL ¢rror wilil result.

.b. Loops. It is orten desirable to pol form the same caloulations
data or repetitively on the same data. Tor this rurpese. ZASILC provides
and NEXT statemonts. The iorn of the IR statemen®t is as foilows:

FOR<variables= <Y -TO-Y > [STEP<Z>]

3 4 a ~ e L . I o - -3
i, Wher Lhe OF statoront 15 orcooountered

where X, Y and Z are ¢

ror

first time, the eoxpressions are cvaluatced. The-vatiable s ot Lo the wvalue

BASLC

which is callaed the airditial wval a2

the FOR statenment in the usual, panner. When = NEXU -tatement is encourtered,

step 2 is added to the variehle which is then tested masinzt the finzl value Y.

18 TI A is less then B o+ C, or if X is not egual

~
o

(@) S8y

S as
Teme

glithe step, is positive and the variable is less than or -aasl to the final value,

or if the step is negative and the variable is greater than or equal to the final
valus, then BASIC branches hack to the s+atement iﬁmediately follcwing the FOR
statement. Otherwise, execution proceeds with the statement follewing the NEXT.
If the step is not specified, it is assumed to be 1. Examples:

1@ FOR I=2 TO 1li : The loop is executed 1f tim:s with the

variabkle I taking on each integral value
. from 2 to 11.

2% FOR v=1 70 9.3 This loop will execute & times until Vv is

: Jreater thar 2.3

3¢ FOR V=1g*N TO 3.4/7 STEF SOR(R} The initial, final and step expressions

ne=d not be. intecral, but they will be
evaluated only once, before looping begins.

49 FOR ¥v=9 TO 1 STET ~1 This loopr will ke executesd 2 times.
FOR...NEZXT loops may be nested. This is, BASIC will execute a FOR...NEXT loop
within the context of arother lcop. 2An example 9f two nested loops follows:

14g FOR I=1 TO 14

127 FOR J=1 TO I

13@ PRINT A(I.J)

14¢ NEXT J

157 WEXT I
Line 13¢ will print 1 elemenc of A if I=1, 2 if I=2 and sc on. I7 loors
are nested, they must have different loor varizble names. The NFXT statement for
the inside loop variahle (J in the example) must appear before that for the outside
variable (I). Any number of levels of nesting is allowed up to.the limit of
availablie nmemory.

The MNEXT 'statement: is of the form:

NEXT [<variable>], <veriable>...}!
where each variable is “he locp wariable of a FCR loop for which the NEXT statement
is the ‘end point. NEXT without a variable will match the most rezent FOR statement.
In the case of nested lcowns which have the same end pcint, a singie NEXT statement
may be used for all of them. The first varieble in the list must be that of the most
recent loop, the second of the next most recent, and so on. If BASIC encounters a

NEXT statement before its corresponding FCR statement has been executed, -an NF (NEXT

WITHOUT FOR) error message is issued and execution is terminateZ.

4

¢

c. Subroutines. if the same operation or series of operations are to be
performed in several places in a program, storage space recuirements and prouramming
time will be minimized by the use of subroutines. A éubroutine is a series of
statements which aré executed in the normal fashion upon being branched to by a
GOSUB statement. Execution of the sukroutine is terminated by the RETURN statement
which branches back to. the statement after the calling GO3UB. Thz format of the
GOSUB statement is as follows:

GOSUB<line number>
where the line number Is that of the first line of the subroutine. A subroutire
may be Ealled from more than one place in a pfogram, and < subroutine may contain
a call to itself or to another subroutine. Such subroutine aesting is limited
only by available memory. Subroutines may be branched to conditionally by use of
the ON...GOSUB statement, whose form is as follcws:

ON <integer expression> GOSUB<list of lin2 numbers>
The execution is the same as ON...GOTO except that the line numbers are those of the
first lines of subroutinss. Execution continues &t the next statement after the

ON...GOSUB upon return from one cf the subroutines.

&. OUT OF MEMC:Y errcrs. While nesting in loops; subroutinas and branching
is not limited by BASIC, memcry size limitations rastrict the size and complexity
of procrams. The OM cr OﬁT OF MEMORY error message l1: issued when a program reguires
more memory than is available. See Appendix C for an explanaticn of the amount of

memory required o run programs.

2-3. Input/Output.
a. INPUT, INSTRS, The INPUT statement causes data input to be requested from
the termirial. The format of the INPUT statement is as follows:

INPUT<list of variables>

T

The effect of the INFUT statement is to cause the values typed on the terminal to
be assigned to the wariables in the list. When an INPUT statement is executed, a
qugstion mark (?) is printed on the terminal signalling a zequest for information.
The operatog types the requaired numbers or strings separated by cormas, and types a
carriage return. If the data entered is invalid (strings were entered when numbers
were requested,'etc.) BASIC prints 'RﬁDO FROM START?' and waits for the correct
data to ke entered. TIf more Jata was regquested Ly the INPUT statement then was
typed, ?? is printed on the terminal and oxecution aQaits the needed data. If more
data was typed than was reguested, the warning 'EXTRA IGNORED' is printed and execution
proééeds. After all the reguested data is input, executicn cortinues norrally at the
statement following the IKPUT. 2An opticnal prompt string may be added to an INPUT
statement.

INPUT ["<prompt strings";]«variable list>
Execution of the statement causes the prompt string to be nrinted bgfore the guesticn
mark. Then all operations proceed as above. The prompt strincg must be enclosed in
double guotation marks (") and must be separated from the variable list by a
semicolon (;). Example:

188 INPUT "VALUES"; X,Y causés the following output:

VALUES?
The requested values of Y. and ¥ are typaed after the ?. A carriage return in
reéponse to ar INPUT statement will c;usé execution to.continﬁe with the values.
6f the variables in the wvariable list unchanged.

The INETRS funution éllows you to read characters typed trom the keyboard
while leaving the screen unchanged. The format of the INSTRS function is:

INSTRS (X)
The X argument gives the nuﬁber of characters of input to accept. Nothing is dis-

played on the screen when the INSTRS call is encountered. The program pauses until

45

X keys are pressed on the keyboard (the keys presszd are not dispiaved on the

screen), and the function returns the &¢tring of characters entered.

L. JOYSTICK INPUT. The functionz JCY, POT, and FIRF are used to read the
position of the joystick, the value of the potentiometer knob, and the hit button
respectively. See section €-3, Intrinsic Functions for a full description of

joystick input capabilities.

c. PRINT. The PRINT statement causes the computer to print data. The
simplest PRINT statement is:

PRINT
which prints a carriage return. The effect is to skip a line. The more usual PRIN
statement has the following form:

PRINT<«list of expressions:
which causes the values cf the expressions in the 1list to ke printed. String
l;etrals may be print2d if they are encicsed in c¢ousle cuotation marxs ().

The position of printing is determined by the punctuation used to separate
the Qntries in the list. BASIC divides the printing line into zones of 14 spaces -
each. A comma causes printing of the value of the next.éxpression To begin at the
beginning of the next 14 coiumn zcne. A semicolen (;) causes the next printing to
begin immediztsaly after the‘last value princed. 1f a comme or semicolon terminates
the list of cuspressions, the next PRINT Piatement begins drinting on the same line
according to the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>