w4 VIDECY

a

MICRO
P.O. Box 7357

204 E. Washington St.
Ann Arbor, Ml 48107

i

BASICALLY
SPEAKING

A QGuide to
BASIC Programming
for the

INTERACT Computer

MICRO 4% VIDEO

P.O. Box 7357
’ 204 E. Washington St

Ann Arbor, MI 48107

BASICALLY SPEAKING

is a publication of

Micro Video Corporation

Copyright 1980, Micro Video Corporation

Copyright 1978, Microsoft

All Rights Reserved

First Printing —- December 1980

Second Printing —— April 1981 (Revisions)

BASICALLY SPEAKING

A Guide to BASIC Programming for the Interact Computer

Table of Contents

Chapter 1
BASTIC BasSiCSeessesooscsssessssossssssscssssecsssscssosssssossssessosaes 1-1
The Three Interact BASIC LaNgUAgeSeeeeeeereseseosssanosssssesanssas 1-11
12N DRl @ @EE S 600000 5000000 060000030000000000000000000000000000% 1-12
Documentation ConventionS.ceeeeisssecessecsocsosesscsasssssesassans 1-13
Chapter 2
HOWETONS PEAKEBASTC N oot ter e ate e olo e o et felo el e s Fole e s Falolel's Falolie s Falolies alta] s alolol's el aliehsbs 2-1
DIRECTIMODE SOBERATION N ol eleroiaterolelels teletete e feeRe et Refeteiele (ool elole o ol el ole e ltel o e e 2-2
SN GO B e 66 0800000 00000000000000003000000800000000 80000000 2-4
SN EEN @B 5500006 0 0o 00 0k 00000 080000000 00000000000000000000¢0 2-5
GizraphilcSNComma St Rere Rttt Re e re et R e R R e Re R Re e Re e oo Rohe =l el R R ReRe =k 2-6
Sounds and MUSICesseasssosoesvossssossossnssssvsosssssscsssssss 2-8
FUNCELONS e 6 oo seovosasvosscsscnsaasosasooonsssovssnssssassssossss 2-9
User=defiined S EUNCIET OS] s elele s sle olelelalolele cleslele shela sl ol olele slele ol el s olle ol olels 2-12
INDIRECT MODE OPERATTION .« e v eoeoscsasecsscssssossososossssnsassoss 2-13
2o AP (N e S B 4515 6510 0 6 0 0100 00 0000000 0000000000000000000000060¢ 2-14
Multiple Statements on a Single Lineeeeeeereieieeeeennrenenenns 2-15
| (e S (@ B iella 0 0 00 000 0800800 000000a000000030030800000380 0300 2-16
Keyboard [Tnplt Lol BLOZTAMS ole ole ola oleksle sle slelsle s e s e alelslelolelslols ol olelelolele 2-17
Internal Program Documentation..eeeeeeeeeeeeseoseenssanesanssas 2-19
Conditienal RelationshipS...ccceeecescsosssascosossessnsososssss 2-20
Look! Before You N hoophilelelele alelaielalaielalelalciaielelelalele [sll e elela e o 'slelel slals ale el elle 2-23
Arrays—-Putting Data in its Place..eieie et eereeneecnenannnns 2-28
Two-Dimensional ArraySeceiceeseeeoecoseosscesassascsassassnsansss 2-31
Higher Dimensional ArrayS.ceeeceeceseecsecsossecsassssccocaocasose 2-32
Entering Data into ArraySecccececcccesocccecsssssosesoasssccssanss 2-33
Pick a Number Between 1 and 100...cceieeeeesnsecsscsccsonsacaans 2-35
Chapter 3
GRABHICALLY SPEAKTNG . rel st ciole s elele alelelelelelele el olele el el sl el sl o el's [ole o\ el 's [alale) = el s] o] & & 3-1
The SCreeMeicsecescoocsssoosssosssssssssasssecensssssessassssassncs 3-1
Screen ColorSiseessssossssvocnnseacnns Ceseaassosnn e cecesreasans 3-1
Good Color CombinationNSeeeceesssoeoosonsoossssvssvsssosssnssnonsse 3-3

TOC-1

Split Screen TechniqueS....eoo.. T S 3-4

Simple Point PlOCLingeeeeeseeeseessocencesssossnssennssnssnnsss 3-6
MElEd—PodME BLOLELTI . o o o« oos o aie aioansvoosaonssossssassssssosasd 3-7
N (G50 00000 0000 000000a08008038000808000088000800000000050C 3-8
G eXe e BN PE sl 0 0 0 PR 00 a0 A 0088 B R A0 000408808000 a00000HA000 0000000 3-8
Graphil D /S P e e eletetatatate et etatehehelol e atetatetehol [ahatat et ek ek aherefa et e rah o o b e e lale = 3-8
275 o T -t =< (<) s o <y o SO POt 3-9

e @ 0000000000008 0000600000000580000000830808000000000300000 Simily

Eharac e T P/alEHCTamS e e lellelelolols oleleteleteterelatetetoteeheherotolohoho 2l alehale holololols 3-10
Interact Slang--Non-Standard Characters....eeeeeeeeeereennnanns 3-11
S el N eYe 49615000 6000020 2000 000 0000000000000000:00020000000¢ 3-11
Creative Motion——Stick Figures.eeeeeeieieeeenoeeennosannsnnnsns 3-12
WO RS ME AR Rt Ro e e Re et et tole e e Re e Ro o e et oo et oo TeTe R e e TR o R et e 000K B0000C 3-13
3-D Letteringececesscecscosscssescacsosesssossssessossessssssnasos 3-13
Graphic Color ConEROLi e cisaieeeicalecesiesisisieesloesss ; 3-14
1Ll e = (0]))& EEE06 0666 000000000 0a000000600003000003000300000000¢0 3-14
Flashing the Screeﬁ .. 3-14
COlOoT ROILIS.eeeeevsostoceostsonnosnasssasnssososanssssssossossss 3-15
15 e LS L = S S S S TSRS R S5 S O PO PO 3-15
I'nisitan Faneoush W ETE ITUE s s el oo s s slelolels s s slslslohelols sl alelalsls s alale s olisla sl olols s 3-16
Advanced Graphics—--POKEing the Screen...... 50000 cesssecasssees 3-16
Graphic Guidelines...ievevieeennns 7000000000000V 0000000000000000 3-19

Chapter 4

STRUNG OUT (String Handling)..eeeeeeeeeeonoosoonssooonnnsnsssssssssns 4-1
Data Mode CONVETrSiONSeeeeceoesssocessossssssssasssosasssonsnsansss 4-3
String Input from the Keyboard.eeeeiieeieieerieeniennnronnnsonns 4-4
Pecking t hel Keyboamd.rerrore oot ool e Lol e ol e e e e e e e 4-6
Storing Strings ON TapPEecssecscccacsassosssssnsessocsosssansosas 4-7

Chapter 5

Interact Gamesmanship (Controller Input)...eeeeeeeeeseesessoonnnnness 5-1

Glam e E RSO SRRl R e e e e el e e e e e R R R R R e e e e e e =

Chapter 6

18 YDA [DN Y NS S S 51550 05 60 0 00 0 0 QN 00000000 00P 0N 0RO 00000000000000000000¢C 6-1
Reading Complex Data Tables.eieeeeeiiieierieneeneennsnnennannsas 6-3

Chapter 7

SUBROUMENES R R el el re el he st ol el le el e el olfe e oo ol efle el el ole e olle e oo ala o e el o e e oo oo e 7-1

TOC-2

Chapter 8

INTERFACING WITH THE BASTIC ENVIRONMENT...¢ccceeeeeececesnccnaccnnnans 8-1
Storing Programs ON TaApP€.cecsececcsccsoscraccscnccsssacccssancss 8-1
Tape Positioning.eeeeeeeeeveeneeeneans 50000000 ceeeseeeenene 8-1
Control Characters...eveeeeee.. 5000000000000000 510 0P 0D 0C 5000000 8-1
What Happens When You Press RESET?...icieiiieiiieeeneennnennnnns 8-2
Program Debuggingeceeeeeeieeseeesstsasssssssosssosssssssssscasos 8-2
Space Saving HintsSeeeeeeeeeseosecssoeosossossossosssesesscnensnsosons 8-3

Chapter 9

S IZAY NE H85 516 660100 00000 000000000000000000000050000000000000C 90000 el
Liine pEiin e ACEESIS e te e letereheteroleetoleteRe folete FoleRe et Re foRe e Rt e ReRo e Re e e o R Re RN o Ne 9-1
I/0 Parameter Control.eueeeeeeeeeeeoesssesesesescscncnsasasasoss 9-2
RN EE5 6600 0 00000 00000000000 00A0030000000000000000000000000¢ 9-2
D e N (0T E 00 000000000800 000000000000000000E000000580000000000¢ 9-3
RSN EEEN O E)]0 60000000 00000000000000000000000000000000000¢ 9-4
Program Listingsciceecssoceesoeasoccasoscsnsoscscsssenssosanssna 9-4
Machine Language Integration—--The USR Function....eeeeeeeeceens 9-5

Chapter 10

BASIC A TO Z (Reference SeCtionN)eeeceeeeceececeecececcccccacccacsoass 10-1
NS5 00000000000001000000000000I000030003000000000000000 00000000 10-1
ANDITCIe e el ehaloitsie s el olele sl sl sl sl sl sl ol olel sl ol ol slolele s lial s aliols sl sl'slolle ! sholslalele! sl ol nle o sl slo s 10-2
5185000000 0000000000000000000008000000000000000000000000000d0dJda 10-3
ATN . e et eeveosooossostosososssesassscsssocsssstsssosossssassssssssansssas 10-4
@505 6000000003000 00000000000A000000300030000000003003000030003 10-5
(GIH 3 NR56 000006 00000000600060000000000000000000000006000000000000 10-7
(60} N5 8000 000 10-9
CLS 00 00K 0ID00000000000000 300000 00000K0000000000K0 50C 10-11
[0} 556000000060 00000M000000000000000000000000000000000000000 10-12
(G10/5h' 00000000000 00000000C00 10-14
G/ Ni565660 ™ 006l 0000300000 000003000600a000a800000003000a3000000004 10-15
D - e 10-16
DEE e e oieleleleele clelels clele o e e alolel e ol [/ slslols Sis e slisle o e sl slslele s olsla o sl slsl el o s slsla e 10-18
B85 60000000000 000000000000800000000000000000000000000000000000 10-19
END e eeeosoessoscsoscoscosessssoaosssssssssssssosssssssssnsssssss 10-22
15425 6000000000000000000000000000000000A00000000000000000000000¢ 10-23
1L %5 6006000 00000000000300000080000000003000000000000000080000¢ 10-24
110566 00000000000000000000000000000000K000000000000003000033000 10-25
1913356 60 000000000000000000000000IN0000000G0a0000000IP00000000000aC¢ 10-28

GOTO e e e e e e e e aaannnnneeeeseeessnnsssssseeessnsseennnnnnnnnnnnnns 10-30
1 S 10-31
INPU T e v et e e aeaneeeeeeanneeeeeeeeeeeeeseeeeseseeseseeesennnnnnnns 10-33
INSTRS e« e e e e e aneeeeeonnnnnneeeeeeseeeeeseeeeeeeeeeesssnnnnnnnnnns 10-34
8 10-35
) QS P P 10-36
LEF T e s e e e e e e eeaannnnnneeeeeeennesnsnnnnnnnnnsnsnnsnnnnnnesennns 10-37
LN ¢ e et eeeeeeeannnnnneeeeeesssnnsssnnsnssssnnnsnsnneeeesaannns 10-38
LEPEe + + s ss e s o o s aloleiasiss s aaeseseseessssssssssssossssssssossssomsoss 10-39
EOG e v+ v oo e s s e o dimonmaisialassiesassssenssiesasessossssdosessnsedsseeoes 10-40
LPRINT e e e e e e e e e aaannnnnnneeeeannnnsansnnsasaseeessnnnnnnnneesans 10-41
MIDS e e et e e aeannnneeeeeeeeeesannnnnnsnnsasnssnsnsncaeeeessannnnn 10-43
)b 10-44
NO T e et eeee e aanneeeeeennnnnnneeeeeeeseseeeeeeeeeeesossnnnnnnnnns 10-45
) 10-46
DR e et e e e aanneeeeeeeennnnnnneeeeeeeeeeeeeseeeeeesssnsannnaneenns 10-48
L 4= 01 S 10-49
PEEK e+ e et s e eeeeeesannnnnnneeeansnnsssnnsnsnssnsnsnsnseeeeennnnns 10-50
23700 S 10-52
POTNT e 4 s e e e e e aaannnnseeennnsannnnnnnnnnnnnnnnnnnneeeeennnnnnnnns 10-55

15019550060 000000000000B00000006500060000000J000000000b00000000000 LE=BIC

2301 S 10-59
POT e v e e e e e e aseasnnnnnneseesssnnsnnnnnnnasannnsssnseeeeseesnnnnns 10-60
320§ 10-62
READ + ¢ ¢ e e e e s s ssnnnnnnneeeeeeesnssssssssnsssnnsssnsssneneeesnnnns 10-63
REM e e e e et aaeeeeeeeeeennnsnnnnneeeeeeeeeeeeeeeeesnnnssnnnnnnnnnns 10-64
RESTORE + + s v et et e e sssnnnnneeeensnnnsnnsnssssssnsssnssnnenaeeennns 10-65
RETURN w & e e et e e aaeesnnnneennnsensnssssssssnssssnssnsnceeeeennnnns 10-66
REWIND + & e e e e e e e sonennnennensnnnnseeeeeeseseeeeseeeeeenennnnnnnos 10-67
RIGHTS « ¢ e v v s eeeeeeeeeennnnnnnneeeeeesoseeeeeaseeeeesnnnnnnnnnnss 10-69
RND o« + e e e e s e e eeennnnnneeeeesssnnnsnsnsnnnsnsnnsnseaseeeeensnnnnns 10-70
SMiel o= ol ole o s o o o o ole s ialellalo atslala s o o & 1o ens oo olelololelolalalololalniole olalels s slate s lsls s s 10-72
5355 P 10-73
SOUND + + a t e e eeeeeesnnnnnnnnnnseeeeeeseseeseseeneeseeeesennnnnnns 10-74
IRl oo oma ofs o o o« o ane)akal %o s s el e s o ols) L8 ol L2 o8 m B o & s blu ole oololdialbisslalalelolo sis sl @ 10-76
570 < 3 10-77

TOC-4

STRY e e e smonenaecasanasosssssnsenassessasncsncsscncoasaosanse 10-79
YN 500000 0000G0000000000003000800000000060050000g030 0 O T 10-80
3/ NV5560000000000008080T00000005000000000000000600000000000000 10-81
SCRI%G 6006000000 0003000000030000006000000030000000000d00306B0 a 10-82
U85 66'660066 0000k 6000000 000001000000003H3430000000000000000¢C 10-85
VAL ettt eieveeovnocoosesassssoasnsosssssasseacsssasncsssessss 10-86
881N S I 55 A B E G 600 000000000 000000000080000005608000000000 10-87
Chapter 11
MACHINE LANGUAGE INTEGRATION. ...eeeeeeoeeeoeecoscsnseansssancasnnnss 11-1
Hexadecimal/Decimal Conversion Table..eeeeeeeeeeeeocccosnas 11-3
APPENDICES
Appendix A —— Error Message Handling.....oceiveieenennennnennens A-1
Appendix B —— BASIC Reserved Words....eeeeeeeeneeeneecncancnennns B-1
Appendix C —— Suggested Programming References.......ceeeeevennnn C-1
Appendix D —— Mathematical FunctionS.....eeeeeieeeeneeennenennnns D-1

TOC-5

AN OVERVIEW OF YOUR NEW MANUAL

Congratulations on your purchase of BASICALLY SPEAKING, the all-new Interact
BASIC programming manual! Whether you're just getting started with programming
on your Interact or you're an experienced programmer who needs more reference
material, we're sure you'll find this book a dramatic improvement over

the old Level II BASIC manual.

Because we wanted BASICALLY SPEAKING to address the educational needs of
programmers at all levels, we've divided the manual into 12 chapters which
explain the fundamentals of BASIC programming (BASIC Basics, Chapter 1)

to the technical details of each BASIC statement (BASIC--A TO Z, Chapter
10).

Chapter 1, BASIC Basics, is intended for people with little or no under-
standing of BASIC programming concepts. It explains the components of

the BASIC language and takes a brief look at program logic with a flow

chart and annotated listing of a simple game program. Chapter 2, HOW TO
SPEAK BASIC, is an introductory walk through BASIC programming in which

we experiment with a number of programming concepts under direct mode control
and indircct mode program operation. This chapter is loaded with examples
you can enter as you read to let you see the structural concepts discussed
(keyboard input, looping, conditional relationships, array handling, random
number generation, to name a few) in action on your Interact.

Those of you who are intermediate to advanced BASIC programmers may find
these first two chapters excruciatingly elementary. Please bear with us—-—
not all Interact owners have attained your level of proficiency with BASIC!
Just skip ahead to the more complex material: GRAPHICALLY SPEAKING (Chapter
3), which discusses a variety of methods for producing entertaining visual
cffects in your program screen display; STRUNG OUT (Chapter 4), which explains
string handling; INTERACT GAMESMANSHIP (Chapter 5), which shows you how

to use the entertainment controllers to build game programs; READING DATA
(Chapter 6), which deals with using DATA and READ statements as an alternate
method of data entry; SUBROUTINES (Chapter 7), which discusses the use

of subroutines within programs; INTERFACING WITH THE BASIC ENVIRONMENT
(Chapter 8), which contains operating and debugging suggestions that can
make your programming life easier; MACHINE LANGUAGE INTEGRATION (Chapter
11), which discusses the mechanics of combining BASIC and machine language
programming.

In Chapter 9, RS232 BASIC, we discuss how to access a lineprinter under
BASIC control and the differences between RS232 BASIC and the other two
versions of BASIC (Microsoft 8K and Level II).

Chapter 10, BASIC -—- A TO Z, is the Reference Section. An expansion of

the BASIC Reference card, this chapter presents all the BASIC statcments
and functions in alphabetical order, with syntax structure, functional
definition, and at least one cxample of the operator in use. We don't
intend for you to read this chapter straight through, but rather usc it

as you would a dictionary when you necd more information about a particular
statement or function.

So, load your BASIC interpreter, and let's get started experiencing the
fun and satisfaction of making the Interact do what you want it to do!

pP-1

BASIC Basics

First of all, what is a computer?

A computer is, simply, a machine that processes information. Computers

come in several sizes. The largest is a mainframe, or macro. Mainframe
computers are uscd by large businesses for their data processing needs.

A mainframe computer has an enormous capacity for processing. In fact,

a number of companies have made a business of selling time (called timesharing)
on their mainframe computers. The next size of computer is a mini-computer.
Mini-computers are commonly used by small businesses for their data processing
needs. Mini-computers don't have nearly the processing capacity that mainframes
do, but they have greater capacity than the smallest in the computer line—-—

the microcomputer or personal computer.

We define a personal computer as one you can buy with a credit card. Many
different microcomputers are available now, but your Interact fits this
definition better than some of the others, such as the Apple, which, in
reality, can be quite expensive. If you compare your Interact's price

and capabilities with other microcomputers, you'll see that, in buying

an Interact, you really get a lot more '"bang for the buck'!

What is BASIC?

Let's imagine for a moment that you speak French and 1 speak German and

that we are trying to communicate with each other. We won't have much

success without a translator—--—someone to take what I say in German and
translate it into French so you can understand it, then take your response

and translate it into German so 1 can understand it. BASIC (an acronym

for Beginner's All-purpose Symbolic Instruction Code) performs that translation
function for you and your Interact.

Computers actually '"talk" in machine language, which is a language with

only two "letters". These letters are O and 1 (or "on" and "off" switches)
that are combined into "words' of 8 '"letters" (omne bytc). The "words"

are combined to form '"'sentences' or instructions. Machine code is complicated
and difficult to learn, so most people prefer to communicate with their
computers using a "higher lever' language that performs the translation
service. That's just what BASIC does——it takes what you say in the BASIC
language and translates it into machine language. Then it takes the computers
response and translates it back into a form that you can understand. 1In

this way vyou tell, or program, your computer to do what you want it to do.

What, then, is a program?

A program is simply a serics of logical '"sentcences™ in the BASIC language
that cause your computer to perform certain tasks. Your Interact can be
programmed in two ways—-dircct mode and indirect mode. In direct mode
programming, your instructions to the computer are called commands. Your
computer performs the task defined in the sentence, or command, as soon
as you press the "CR'" key to cnter the instruction.

1-1

Let's clear up one popular misconception. Computers are not smart! In
fact, they are extremely dumb. A computer can do only what it is told
to do, and it will attempt to follow instructions given it exactly. So,
in programming, don't blame your computer if the result is not what you
intended. Keep in mind that the computer did just what you told it to
do. If that wasn't right, you need to give it different instructions.

When you type a direct mode command or indirect mode program line, your
computer has no way of knowing that you are finished typing the line unless
you tell it so. (It can't read your mind!) Therefore, you must conclude

entry of any command or program line by pressing the "CR" (carriage return)
key.

In direct mode, your computer can execute instructions only one line at

a time. A single line can, however, contain several commands. You can
chain multiple commands together on one line by separating the individual
commands with colons. For example,

NEW
- CLS:COLOR 7,4,0,1:PRINT "HELLO"

In indirect mode, each '"sentence'" is called a statement and is assigned

a line number which determines the order in which the defined task(s) will
be performed. Statements in indirect, line-numbered programs are executed
in the numeric order in which they appear. The statement(s) on the lowest
numbered line is always executed first, followed by statements on the next
higher numbered line, and so on. Statements on some lines may be skipped
altogether if a statement tells the computer to skip over them, however.
Indirect mode programs can contain as many lines and statements as memory
permits, and the tasks defined in the program statements are not performed
until you type the RUN command. If we put the above example into indirect
mode, it would look like this:

NEW

10 CLS

20 COLOR 7,4,0,1
30 PRINT "HELLO"

Whether in direct or indirect mode, program ''sentences' can be broken down
into the same set of constituent parts. The "words that make up the state-
ments or commands fall into the following categories: line numbers, keywords,
strings, constants, variables, operators, functions, arguments, expressions,
and data. Let's take a closer look at each of these parts.

A line number is always the first "word" in an indirect mode program line.
The line numbers control the order in which the program lines are executed
when the RUN command is given. A line number can be any number between

1 and 65529. Since statements are executed in the order in which they
appear on the numbered lines, make sure you number your lines so that the
execution of statements follows the logic necessary to accomplish a given
task. Line numbers never begin direct mode commands.

A keyword is one of a specific set of words that tell the BASIC interpreter

to perform a task such as PRINTing a string, OUTPUTting a value at a certain
location, PLOTting a line, GOing TO a different line, DIMensioning an array,

1-2

etc. All the keywords recognized by BASIC can be found alphabetically

in the Reference Section. Some keywords are primarily used in direct mode,
such as LIST and NEW. Some keywords can only be used in indirect mode,
such as GOSUB and END. Most of the keywords can be executed in either
mode.

A string is a set of alphanumeric characters that is stored in either a
string variable (such as A$) or as a string constant enclosed in quotes
("HELLO", for example). Strings are generally used to define something
that is to be output on the screen, although they may be used for other
purposes, such as testing input from the keyboard.

Constants are numeric or string values that are unchanging. An example
of a numeric constant is pi (3.14159), or the number 7. Constants are
generally assigned to variables for use in programs. A string constant
is defined by enclosing the set of characters in quotes (e.g., '"MARY").

Variables are user-defined names that act as storage slots for string or
numeric constants or the results of function calls or arithmetic expressions.
Variables provide a convenient means of reusing a constant or the result

of an operation without having to reprogram that expression every time

you want to use it. It's not only easier to reference variables, it also
saves program space. For example, if you wanted to compute the area of

a series of circles with radii of 2 through 7, you could use a series of
statements in indirect mode such as

10 PRINT 3.14159 * (2%*2)
20 PRINT 3.14159 * (3%3)
30 PRINT 3.14159 * (4%4)
40 PRINT 3.14159 * (5%5)
50 PRINT 3.14159 * (6%6)
60 PRINT 3.14159 * (7*7)

You can see, however, that this is a rather cumbersome method of attacking
the problem, particularly retyping the value of pi over and over. A much
simpler and more space-efficient method of accomplishing the same task

is to use variables for the values of pi and the radii.

10 P = 3.14159

20 FOR R = 2 TO 7
30 PRINT P * (R*R)
40 NEXT R

This small program defines the slot called P as equal to the value of pi.
It defines the radius of each circle as R and also tells the computer to
perform the operation of finding the area of the circle six times.

There are two types of variables--numeric and string. Numeric variables
are used only to store numeric values. Variable names are chosen by the
user according to variable naming conventions or rules. These rules are
simple: the variable name can be as long as you like, but it must begin
with a letter, and the first two characters of the name must be unique.
Some examples of numeric variable names are A, X1, IN, A4A, A3ABC. String

1-3

variables are used to store string information (which can contain numeric
characters). String variable names follow the same naming conventions

as numeric variables, except that they must end with a dollar sign ($).
String variable names are assigned to string constants that are to be reused
within a program or to establish storage slots for data to be entered during
program execution. For example, the following simple program requests

entry of a string, then prints a message that includes that string.

10 INPUT '"WHAT'S YOUR NAME'; NM$
20 PRINT "HELLO, ''; NM$
30 GOTO 10

Never, never use any of the BASIC keywords, operators, or functions as
variable names!

Operators are like keywords in that they are recognized by BASIC as instructions
to perform a specific arithmetic task or evaluation. They are used in
the definition of expressions. Valid operators are:

+ addition*

- subtraction
* multiplication

division (appears on your keyboard as +)
exponentiation

precedence®

greater than

ANv >~

less than

equal to*¥x

><L not equal to

>= greater than or equal to

Il

<= less than or equal to

* 4+ can also be used to concatenate strings, e.g., PRINT A$ + BS$.

st
w

precedence is the order in which arithmetic expressions are evaluated.
For example, does

A=B+C/6

~
mean add 4 and B, then divide the total by 6, or divide C by 6 and add

the result to B? BASIC follows standard mathematical conventions and

does multiplication and division operations before addition and subtraction.
Therefore, BASIC interprets the above statement as A = B + (C/6). If

you want to add & and B, then divide the result by 6, you would enter

the statement as A = (B + C)/6.

= acts as the assignment operator as well as a relational operator.

1-4

Functions are predefined rules for complex computations of values based
on other values. Functions reduce redundancy in programming by eliminating
the need to repeat complex operations again and again. Functions fall
into two general classifications—-those that perform arithmetic operations
and those that operate on strings (called string handling functions).
There are a number of built—in arithmetic and string handling functions

in BASIC. Examples of arithmetic functions are TAN, SIN, COS, SQR, EXP,
LOG. Examples of string handling functions are INSTR$, MID$, LEFT$, CHR$,
STR$. Sece the Reference Section for specific information on the various
built—in functions. BASIC also allows user-defined functions, in which
you name a function and specify what it is to do each time it is called.
Again, this is convenient for eliminating needless repetitions within the
program (see DEF for more information on user-defined functions).

Arguments are values in parentheses after functions that tell the computer
on what value the function is to be performed and a result returned. An
argument can be a constant, a variable, an expression, or even another
function call. For example,

PRINT SQR(A)
tells your computer to compute and display the square root of the value

of the argument, A.

An expression is a combination of variables, constants, function calls

and operators that, when evaluated, has a single value. One or more expressions
can appear within a program line. Usually, arithmetic expressions define
mathematical processing to be done. String expressions define string handling.
The underscored portions of the following statements are valid expressions

in BASIC:

A$ = "LEFT PLAYER NAME"

A$ = CHR$(B$)

P = SQR(A) * 100

N$ = MID$(A$,2,3)

IF C = 10 AND B = 100 THEN F = 256

G = (4 * TAN(X) + 100)/((SQR(V) * (8 + V)) * (ABS(X) + 2)

Now, none of the above expressions is particularly meaningful outside the
context of a program with other statements, but they do illustrate that
expressions can take many forms, from the very simple to the extremely
complex. It is through the evaluation of expressions that we define values
stored in variables or other operations for reuse within a single program.

Data are values that are entered into the program and then used in subsequent
processing. Data take a variety of forms, are used in a variety of ways,

and can be entered in several fashions. Data values can be entered from

the keyboard during program execution via INPUT statements or the INSTR$
function. Data values can be input from the joystick lever, potentiometer
(pot knob), and fire button of either entertainment controller during program
exccution and used to determine what happens next in a program. The RS232
peripheral interface provides another method of data entry. The tape deck

1-5

is another data entry '"vehicle'". Data required to use the BASIC interpreter
is entered into your computer every time you load BASIC. The CLOAD command
can be used in direct mode or from within a program to enter data from tape.
And, data can be embedded in program lines with DATA statements and used

as needed by referencing the data values with READ statements.

Just as there are several methods and devices for data entry, there are
also several means to output data. The CSAVE command can be used to output
data or programs to tape. The OUTPUT, PLOT, and PRINT commands cause data
to be output to the most familiar output device, the TV screen. The COLOR
statement changes the data that control the colors output on the screen
during program and direct mode execution. The LIST command displays the
data in the lines of your program on the TV screen. The SOUND and TONE
commands convert data values into sounds that are output through your TV's
speaker. If your computer is equipped with the Micro Video RS232 peripheral
interface and RS232 BASIC, you can use the LLIST and LPRINT commands to
output data through the interface port to a lineprinter. With the RS232
interface and the Micro Video COMMUNICATOR program, you can output data
through a modem (also called an acoustic coupler) to access a timesharing
system.

These '"words'" in the BASIC language are the building blocks through which
we communicate with our computers and control them. Once you learn the
"words" and the correct way of putting them together (called syntax), all
that remains to becoming a '"programmer extraordinaire' is mastery of the
logic behind programming.

Program logic is the order in which you tell your computer to execute the
statements in your programs. As previously stated, the computer will process
ecach line in its sequential order, unless you tell it to execute some other
line or set of lines with a GOTO or GOSUB instructions within a program
line. You tell your computer to branch to other parts of the program based
on the evaluation of an IF or ON instruction. You can tell your computer

to perform an operation or set of operations more than once by putting those
instructions inside a FOR...NEXT loop. You can chain statements together

on a single line and execute them based on the result of a conditional test
with the IF...THEN logic instruction. Branching, chaining, and looping

are all integral parts of program logic—-they provide the means to '"move
around'" within your program.

The logic operations can get rather complicated, so in your initial progamming
attempts, you may find it helpful to draw a flow chart of your program logic
before you try to enter and run the program. A flow chart is a graphic
representation of the logic in your program--you might consider it a map
through the program roads. By following the lines and arrows, you can trace
what the outcome of any flow through the program will be.

Let's take a relatively simple example that illustrates several of these
logic operations. Let's say you want to program a guessing game to play
with your computer. In this game, the computer will pick a random number
between O and 10, then ask you to guess it. The computer will let you have
three chances to guess the number and will tell you if your guess is too
high, too low, or correct. At the end of each game, it will ask if you
want to play again. You might draw a flow chart for this program as shown
on page 1-8.

1-6

o

On the flow chart on the next page, three symbols are used. Rectangles
indicate operations BASIC is to perform. The diamond shaped symbols indicate
a decision that is to be made based on the result of a conditional test;
branching to different parts of the program occurs depending on whether

the answer to the question asked is '"yes'" or 'mo'. A program loop controls
how many guesses the player has to get the correct number. The lines between
the symbols chart the flow from operation to operation in the direction
indicated by the arrows. Circles indicate starting and ending points of

the program.

Follow the paths through this flow chart to see if you understand the program
logic. Then, see page 1-9 to see the actual program that plays this game,
along with explanation of the various program statements.

START

Pick random
number betw.
0 and 10

(CN)

Set number
of guesses
in a loop

(G).

Get player
guess (PN)

PRINT PRINT

MESSAGE MESSAGE

"TOO LOW" "TOO HIGH"
NO

PRINT
MESSAGE

"YOU LOSE"

GUESSING GAME

FLOW CHART

YES

/
PRINT
MESSAGE FOR
1ST GUESS
WIN
\4
PRINT
MESSAGE
"YOU WIN'"

1-8

*passadd st N a0 wAu Ing Aay Aue 41
($YLSNI) uot3ouny 3ndut paeoqhay 03 sudniay

*uotjnoaxa wedboud sdois ‘ou st Jamsue
g ! 3T

*utebe Emgmopa
S}JB}S puUB (Z BUT] 03 S30D ‘safk st Jamsue 47

gl p@az 0105 BEZ
Joj sjtem pue utebe Aeyd o3 juem nof 41 mv_mm_/ ONT N3IHL JN.=8Y 41 822
*SpU023s BZ 04109:5713 NIHL oA.=%t 41 912
Maj e U994ds uo abessaw euty sproy--doo| asney (TOHPHISNT =% bac
i »ENIHOY ADTI4. INIdd 96T
*Jaqunu 3934400 3y3 skeydstp pue ~

abessau ,8s07, sjutdud *dooy ay3 ybnouyy sauty NI . ..m.JU vaT
*abessau jusJajgytp Jajje A73294400 passanb jou sem daqunu 8yl JI HXUZ.&&W@._.._.HON_OL 6L1
jutad ou j1 ‘abessauw ND . SUM, INI&d: . 4FFWNN AW INTHd BST
qutad ‘sak 4 -ssenb . 138071 NOA “AMMO0S. 1NIdd 357
1SJT4 SeM 3T JT 23S 03 8270109: . iNIM 10OA.INTIdd: . 11T A3SS3MNO NOA.LLINIdd N3IHL T<3 ONY ND=Nd 51 b7
49847 *1984409 ST Jaquny Y2T0109: (4LIY3HD IOA OId.INIdd:. idHOIY S 1YHL1.INIdd N3HL T = 9 ONY NS = Nd4 41 3ET
IX3IN:INIdd:« iH9IH O0L, 1NIdd N3kl ND < Nd 31 BZT
[OEqESTET P08 X0 PUER3 29800 St LX3N:INTEd:, iMOTT O0L. LNTIdd N3HL ND > Nd 4T 8717
Jaqunu saunsse ‘N ueyj Jajeadb jou ST 3T JI LNTINA 09T
*ssanb 3xau Joj suunjad pue abessauw sjutud ‘st Ndf.S53N9. 1NdNT g6
P ILCND UBY3 Ja3eaub ST Nd 4T 225 03 S3sey - LHMNOA S .LUHM. INI&d: ININD 02
31X3U S93NJaxXd ‘NJ UBYY SSOT 30U ST 3T 41 -ssanb) 4] € 0L T u.w .W:,uu a.
1X3U 404 (g BUT] 03 SUJN3ad uayj ‘ebessau sjutdd wé&1I SS3NS W INIYd: - NOA Zcu...rZHw_&.“:._H.&n_ QM

" " (=
“uNdu @TgETIEA g wO3ADId 3MBH I..ININd 3€
ay3 3T sTTed pue ssanb Jajua 03 Jdahkeyd sysy (TT#{ TYANNIINI=NT @2
*sassanb ¢ sey S0 a7

Joker1d ayj3 os--sauwt] ¢ pejnoaxa aq [[im dooy ay)
*doo] e utyjTM pamolye sassanb jo Jaqunu ayjl s3ag

*aweb utbaq 03 asbessauw sinding

“uNJu @TqetJeA 3yj 3T syfed
pue (] pue (U8aM}aq JaquNU WOpueRJd B S3S00Y)

*swedboud 1 utbeq 03 Aem 801U y *uUB8UDS BY] SJEBIT)

1-9

If you would like to try modifying this program to make it work differently,
here are some suggestions:

1) Change the number of guesses allowed by changing the 3 in line 70 to a
higher number. The number you put in place of 3 will be the number of
guesses allowed.

2) Make the game harder by choosing a random number between O and 100. To
do this, change the 11 in line 20 to 10l1. You will also want to change
line 50 to read "BETWEEN O - 100".

3) Add more IF statements to vary the winning message output based on how

many guesses it takes the player to get the correct answer. Model additional
statements after line 180.

In review, a computer program is a series of logical instructions to the computer.
These statements consist of keywords, variables, constants, expressions, function
calls, arguments, and other "words'" the computer understands, expressed using

the correct syntax. The parts of statements and proper syntax is relatively

easy to learn--putting the statements into logical order provides the greatest
challenge in programming. There's enormous satisfaction in seeing your program

do just what you intended it to do when you type RUN. Don't be discouraged

if your first efforts end in syntax or other types of errors, however. Even

the most advanced programmer rarely writes a program that will run error-free

the first time it's executed.

Good luck, and happy programming!

The Three Interact BASIC Languages

There are three different BASIC languages for the Interact. You can load
and use one or more of them, depending on the configuration of your computer.

EDU-BASIC

Microsoft 8K
FAST Graphics
BASIC

RS232 BASIC

EDU-BASIC is an integer BASIC language. This means that

you cannot do any arithmetic operations that require floating-
point capability. It has far more limited capabilities

than the other two BASICs, but it also consumes less RAM.
EDU-BASIC is the only programming language you can use

if you have a computer with only 8K of RAM. Programming

with EDU-BASIC is not addressed in this manual.

Microsoft 8K Fast Graphics BASIC is an upgraded version

of Level II BASIC. It replaces Level 11 BASIC completely.
Both Microsoft 8K and Level IT BASIC are floating-point

BASIC languages—-that is, they can perform operations

on any real number. To use either of these versions of

BASIC, your computer must have at least 16K of RAM. Microsoft
8K and Level IT1 BASIC both consume the same amount of

RAM. They take up more RAM than EDU-BASIC, but provide

far greater capabilities. The bulk of this manual describes
programming with Microsoft 8K (or Level I1) BASIC.

RS232 BASIC is an expanded version of Level I1 BASIC that
provides the ability to access a lineprinter to produce
program listings or formatted reports from your BASIC
programs. You must have at least 16K of RAM and a Micro
Video RS232 peripheral interface for RS232 BASIC to load
and run properly. RS232 BASIC has two commands that Level
IT BASIC does not have--LLIST and LPRINT. Because these
commands were added, the format of RS232 BASIC is different
from that of Level II. You can load and run programs
written in Level I1 BASIC with RS232 BASIC, provided you
have the RS232 EZEDIT program editor to translate your
programs into the correct format. If you know how to
program with Microsoft 8K or Level II BASIC, you will

find it easy to learn the two additional commands in RS232
BASIC. 1Instructions for using RS232 BASIC and discussion
of the differences from Level II are included in this
manual .

1-11

BASIC Dialects

Many people want to know why they can't take TRS-80, APPLE, or other micro-
computer programs written in BASIC and load and run them on the Interact as
is. The reason you can't do this is that every microcomputer has its own
"dialect'" of the BASIC language. The syntax of the many BASIC statements

can and does vary from microcomputer to microcomputer. Therefore, a statement
that a TRS-80 computer understands perfectly may make absolutely no sense

to your Interact.

The different BASIC dialects have different commands available. Your Interact,
for example, has the SOUND, TONE, and COLOR commands in its BASIC language,

and the TRS-80 does not. If you tried to load an Interact BASIC program into

a TRS-80 computer, the TRS-80 wouldn't know what to do with those commands.

In addition to the differences in syntax and available commands, BASIC resides
in different areas of memory in different computers. All the words that BASIC
understands are stored as numbers in a table. To you it looks like PRINT,

but to BASIC it's a number, such as 128. 1In TRS-80 Level IT BASIC, PRINT
might be stored as number 243, which adds another level of confusion if you
try to load and run a TRS-80 BASIC program in the Interact. You computer

just flat out doesn't know what to do with the information it's been given!

One final problem is that there are also differences in tape formatting from
computer to computer. Each computer can have its own method of reading and
writing tapes, and the methods are not always compatible with other computers'
methods. A program must be read into memory using the same format in which

it was written to tape.

You can, however, convert BASIC programs from other computers to run in Interact
BASIC. It's a lot of work, because you will have to type in every line all

over again, making adjustments as necessary to conform with Interact syntax
conventions and available commands. We suggest that you do not attempt program
conversions of this nature until you are completely familiar with the workings
of Interact BASIC.

Documentation Conventions

We have used the following general conventions in this manual:

USAGE EXAMPLES

In illustrations of direct mode operation, information you enter is displayed
in type. The computer's responses are indicated by bold face type.
For example,

PRINT 3%147
441
OK

In program examples, the program lines are displayed in bold face type.
If you want to enter the examples as you go along, type each line as it
is presented, including the line numbers as shown. For example,

10 CLS
20 COLOR 3,1,7,0
30 PRINT 3 * 147

Some sample program listings were produced using our RS232-equipped Interact,
RS232 BASIC and a COMPRINT 912-S lineprinter. Examples using actual program
listings look like this:

18 CLS
28 COLCR 3,1,7,0
30 PRINT 3 % 147

GENERAL FORMS OF COMMANDS/STATEMENTS

In the Reference Section, the general form of each command or statement
is presented. In each general form:

Words that appear in UPPER case are BASIC keywords. You must enter
the keywords exactly as shown when using the command or statement.

Words that appear in lower case indicate information that you are
supposed to supply when using the command or statement. The type

of information you should supply varies from statement to statement,
but is generally a variable, argument, expression, etc.

Words that appear in square brackets ([]), whether upper or lower
case, indicate that that part of the statement is optional. You can
include them or not, as appropriate to your usage of the statement.

.

HOW TO SPEAK BASIC

This section of the manual teaches you how to converse with your computer

in the BASIC language. 1It's a '"walk-through' of BASIC programming that

is liberally sprinkled with examples to illustrate the points covered.

We suggest you keep your computer handy with BASIC loaded as you read through
it so that you can type in the examples as shown and get hands-on experience
with your computer and the BASIC interpreter.

After you load the BASIC interpreter, the message '"4698 BYTES FREE" and

the BASIC "OK'" prompt appear on the screen. The first messsage tells you
that you have 4,698 bytes ('"computer words') available to put your program
in. The "OK'" prompt is BASIC's way of telling you that it is ready to
accept your commands. You will see the "OK" prompt each time BASIC finishes
processing a command you type in or a program you run.

The very first command you should type when you see the "OK" prompt after
loading BASIC for the first time in a processing session is the NEW command.

4698 BYTES FREE
OK

OK

You must type NEW because the RAM (Random Access Memory) used for program

and data storage is not cleared when BASIC is loaded. 1If you have loaded
BASIC right after turning your computer on or after running a machine language
program, the program storage memory locations are filled with random values
that are meaningless to BASIC (we call it '"garbage'). 1If you forget to

type NEW, an '""?70M ERROR" or other type of error is likely to result. NEW
sets an internal pointer of BASIC to indicate that no program is in memory.

Why doesn't BASIC do this automatically? Even though it means you must
remember to type NEW, there is a major benefit to this organizational scheme.
Because memory is not cleared when BASIC is loaded, you can enter a program
and run it, then load the EZEDIT program editor to make program corrections
or renumber the lines in the program, then load BASIC and run the program
again--all without having to save and reload your BASIC program every time.
If BASIC cleared that area of RAM, your program would be cleared out every
time as well, and you'd have to keep saving and reloading it. Remember

that you do not want to type NEW when you reload BASIC after using the
program editor!

You should also type NEW any time you want to begin entering an entirely
new program.

Once BASIC is loaded and you have typed NEW, you are ready to begin operation
in direct mode or program entry in indirect mode.

DIRECT MODE OPERATION

In direct mode, your computer processes your commands as sSoon as you press
the "CR" key to enter them. Your computer can perform mathematical compu-
tations in direct mode in much the same way as a calculator does. It can
also print the contents of string variables or constants. Nothing 1is
done with the information you type until you hit "CR", so you can correct
any errors you make simply by pressing the Backspace key as many times

as necessary and retyping the line.

One of the most commonly used commands in direct mode is the PRINT command.
PRINT is used to scroll lines of information onto the screen. The information
can take a variety of forms. For example, try typing the statement

PRINT "HI THERE"

and press the "CR" key. The words HI THERE will scroll out on the bottom

of your screen. You can scroll anything you want in this way. If you

don't put any leading spaces in the string, the first character of your

string constant is output as the first character on the line. However,

you can add leading spaces to control how far over on the line your string
starts. PRINT also has a "wrap-around" feature. 1If your string has more

than the 17 characters that will fit on one line, any extra characters

are output at the beginning of the following line. To see how leading

blanks affect the screen positioning of strings, type the following statements:

PRINT " RN (S5 leading blanks)

PRINT "' o = HI THERE" (15 leading blanks)

Because you use PRINT so often, BASIC will let you abbreviate the command
to a question mark (?) in both direct and indirect mode operation. PRINT
is the only BASIC command that can be abbreviated in this way. Type

You use the PRINT command to perform arithmetic calculations in direct
mode almost as you would a calculator. For example,

OK
6369

OK
18

OK

Note that BASIC responds with the "OK" prompt after it finishes each direct
mode command. In subsequent examples we'll leave out that prompt to save
space, but if you type in the examples, you will see the prompt each time.
Also note that you can put spaces between keywords and operators if you

2-2

like for easier readability. BASIC ignores those spaces, so operation
is the same whether or not you include them.

PRINT can also be used to display the contents of variables and the results
of function calls and arithmetic expressions. To illustrate this, let's
assign the values 9 and 3 to variables named A and B, respectively.

[53]
I
(%)

Now that we've defined the variables A and B, we can perform operations
using them.

10
? (A+B)/SQR(A)
4

?_LOG(A)

2.19722

And so on. Experiment with using the PRINT command imr this way until you
are comfortable working with it.

You can print more than one value on a single line with the PRINT command,
using the semi=colon (;) as a separator. You can combine numeric and string
constants with numeric and string variables, or even expressions. For
example,

"

A$ = "BLUE'|
.

BLUE 3 GREEN 9
7A$;"GREEN! ;B ; A$

BLUEGREEN 3 BLUE

When you use the semi-colon separator, BASIC outputs a leading and trailing
blank around numeric data, but no blanks with string data.

You can also separate items to be printed with commas (,). If you use commas
as separators, BASIC puts each item into a field 14 characters long. It

will "wrap'" string data on the screen, but not numeric data. Try entering
one of the above examples using the comma as a separator to see the different
result. Because the Interact has only 17 characters per line, the output
using commas is not particularly attractive, so the comma separator is not
frequently used.

Finally, you can use the PRINT statement alone to produce blank lines in
your screen display. Try typing

~ '
G, B

to see how the scrolled information looks with blank lines included.

Screen Control

The CLS statement tells BASIC to wipe off all information off the screen.

CLS is frequently used as one of the first program statements so that the
program starts off with a fresh, clean screen. This is not terribly important
operationally, but it gives a better visual effect. Type

CLS

Note that the BASIC "OK" prompt reappears at the bottom of the screen after
it is cleared.

Interact BASIC has 8 programmable colors, ecach of which has an assigned
reference number. These colors and their associated numbers are:

black = 0 red = 1
green = 2 yellow = 3
blue = &4 magenta = 5
Sylam = 6 white = 7

You can use only 4 of these available colors at any one time. If you are

using Microsoft 8K BASIC, the starting background color of your screen is

black (0). With Level IT or RS232 BASIC, the starting screen color is blue (4).

The COLOR statement controls which of these colors are in use at any one

time. Type
0,1,2,3 cCulor Jo.:i‘}'-'w

to see a dramatic change in the screen.

You can see that the number placed in the first position of the color set
defined in the COLOR statement control the background color of the screen.
This first position is calded '"color 0", regardless what color value you

assign to it. ,_7 Bccksruw\.o/

' re00
IX4 Jine number c/. e ley
C < /D " ﬂJ BZ‘—’QC J)) G = u:“’Lér Plo+ o CJU+I’U+

D = stk ‘ﬁ_nu.:"/-',\-.s , 0k f'°~fvt

Crene marlecran

9

‘9

The color in the second color set position (called "color 1") is the color
in which program line numbers are displajed when you LIST your BASIC program.
Type

10 ? "HELLO"

then type

10 PRINT '"HELLO"

You will see that the line number 10 is displayed in green, because you
have placed the value 2 in the '"color 1" position of the color set. Also
note that BASIC translates the "7" abbreviation to the keyword PRINT when
it lists the program.

The color in the third position in the color set (called "color 2") is
not used in screen display unless you reference it from a PLOT or OUTPUT
command (discussed later).

The color in the fourth position (called "color 3'") is the color in which

the line you type in direct mode, information on program lines, the BASIC
"OK" prompt, and error messages are displayed. You can see from the previous
example that the PRINT "HELLO" part of the line is displayed in red, along
with the LIST command and the "OK'" prompt.

Experiment with different color sets by entering several COLOR commands
to see the effects and find those which are most visually attractive.
Some color combinations are more aesthetically appealing than others.
For example, you'll find that red letters on a blue background (or vice
versa) looks horrible and is also hard to read.

The commands we've worked with so far are screen control commands. CLS
wipes the screen clear, PRINT scrolls information onto the screen from
the bottom of the screen, and COLOR controls what colors appear there.
There are others, and we'll look at them shortly. But first, let's talk
about the graphic layout of the screen.

Screen Layout

Consider your screen to be a grid or matrix of picture cells (called "pixels").
This grid has 77 horizontal lines and 112 vertical lines. You can control
what appears at any given pixel in this matrix by referencing its (x,y)
coordinates. 1In technical terms, the screen is called a "dot-addressable
matrix". The x-coordinate tells the computer how many pixels (vertical
lines) from the left side of the screen something is to be displayed.

The x-coordinate is always a number between 1 and 112. The y-coordinate
tells the computer how many pixels (horizontal lines) from the bottom of

the screen a value is to be displayed. The y-coordinate is always a number
between 1 and 77, where 1 specifies the bottom-most point on the screen

and 77 is the top. The Interact's graphics resolution is, therefore, 112x77.
This is considered to be medium resolution graphics.

X —)ad e vl
P -t ed) s S

/)! i

Now, let's examine the other commands that control screen graphic output.

The WINDOW command specifies how many lines (pixels) up from the bottom

of the screen are to be allocated for information scrolling with the PRINT
command. The default, full-screen setting is WINDOW 77. WINDOW allows
you to '"pull a window shade'" partway down your screen, so you can ''see"
only out of the bottom part. Type

INDOW 24

Notice that the screen now appears to be cut into two parts. Scrolling
"disappears' under the shade about three character lines from the bottom
of the screen. Now type

CLS:PRINT "HELLO':PRINT "THERE"

and watch what happens. See that the scrolling takes place only on the

bottom three lines of the screen, while the rest of the screen remains blank.

This blank area is useful for graphics development--we'll use it to work
with the other screen control (or graphics) commands.

Two final notes about the WINDOW command. If you use WINDOW in a program,
remember to reset to WINDOW 77 when you stop execution with a Control-C
for listing or other purposes. And, the smallest WINDOW you can set is
WINDOW 11. If you try to set a smaller window, a "?FC ERROR" will occur.

Graphics Commands

Interact BASIC has two graphics commands—-OUTPUT and PLOT.

The OUTPUT command is commonly used to display numeric or string information
on the TV screen. The PRINT command also outputs such information on the
screen, but is doR® @e in a scrolling fashion, and you can only control
the color of display by changing the value of color 3 in the color set (with
the COLOR command). The OUTPUT command lets you put that same information
anywhere on the screen, in any one of the colors in the currently defined
color set. Type

0,1,2,3

COLOR 0,3,4,1 :
COLOR 0,3,4,1 X colov
OUTPUT "'HI THERE!",30,40,1

Your computer displays the words HI THERE! in yellow (color 1) in the approximate

center of your scre®s. Note that the (x,y) coordinates tell the computer
in what pixel to put the top left corner of the first character block in
the string. (A character block is 5x5 pixels in a 6x6 pixel area.)

As with PRINT, you can use OUTPUT to display different kinds of information
on the screen. You can output numeric or string constants, the results
of function calls or expressions, etc. For example, type

A = 30

2-6

OUTPUT A * A/B, 50,50,

You'll see that the value 45 is displayed in the upper middle of the screen.

You can use the OUTPUT command with the CHR$(1) function to display a 5x5
pixel block on the screen. Type

OUTPUT CHR$(1),10,70,3

and watch a red block appear in the upper left corner of the screen. You
can put such an OUTPUT statement in a loop to draw wide lines on the screen
with Level II BASIC. 1In fact, in Level II BASIC, OUTPUT CHR$(1) is the
only way to draw wide lines, and you can only draw a line five pixels wide.
We'll show you how to do this later on in the Graphics chapter.

The other graphics command is PLOT. 1In its simplest form, PLOT outputs
a single pixel at any (x,y) location on the screen in any one of the colors
in the current color set. Type

CLS .
!(J Coalor
PLOT' 60, 50,3

and a single red dot will appear on the screen. You can put this PLOT
command in a loop to draw a line. Type

FOR X = 1 TO 112:PLOT X,25,2:

and watch a blue line go across your screen at the top of your "window'.

In Microsoft 8K BASIC, the graphics capabilities of the PLOT command have
been extended. Not only can you tell the computer where and in what color
to PLOT, you can also tell it how long and wide you want the plot to be.
With Microsoft 8K BASIC, you could draw the same line as you did with the
three statements chained together above, but with a single command. Try

typing Lans?h

N width

See how much faster that was? This command told your computer to draw

a blue line (color 2) that is 112 pixels long and 1 pixel wide, starting

at the first pixel on the left (x-coordinate), 35 pixels up from the bottom
of the screen (y-coordinate). Try combining these last two examples on

a sinzle line to sec the difference in speed. Clear the screen first with
CLS.

OR'X = 1'TO 112:PLOT X,25

To draw a wider, red line, type

PLOT 1,40,3,112,6

2-17

You can also draw vertical lines of any length and width with the PLOT command.

T e ¢
YP x v de W

PLOT 50,35,1,10,30

You can specify a length of up to 112 pixels and a width of up to 77 pixels.
Type

PLOT 1,1,2,112,77

This plots a rectangle the same size as the screen. You can use the PLOT
command in this way for a different method of clearing the screen in your
programs.

The extensions to the PLOT command in 8K BASIC, while reducing the use of
loops, do not eliminate their use entirely. The new PLOT command makes

8K BASIC far more powerful for graphics development. See the Graphics chapter
for more information on screen graphics development.

Sounds and Music

Your Interact has one feature few other microcomputers have-—it can produce
sounds through your TV speaker. It can make sounds in three ways. You

can enter SOUND commands to make your computer make a wide variety of noises--
clicks, buzzes, beeps, trilling rings. You can use TONE commands to play
musical notes or tunes. And, you can use the REWIND command to turn the

tape motor on to play music, voice, or sound effects on regular audio cassettes.

Reset the window using WINDOW 77. Now type

SOUND 6,242

and you'll hear a sound like a telephone dial tone. This sound will continue
until you press any key to stop it.

The SOUND command is followed by two values separated by commas. The first

value must between O and)f,\inclusive. The second can be any value between
1 and 32767, inclusive. TypE\\\\A

SOUND: 0,24844 Z 5%
to hear a wailing siren. Type
SOUND 2,230
and you'll hear what sounds like a motorboat. Or, try
SOUND. 3,32
to create the sound of a passing locomotive.
You can combine SOUND commands in a loop to produce continuously changing

sounds. Type

2:8

1 TO 5000:SOUND 3,X:NEXT

and listen to your Interact produce a series of interesting noises. Your
Interact can make hundreds of sounds. Experiment with entering different
sound commands to hear some of them. (You'll find that not all values
within the parameter ranges produce audible sounds.) A list of our favorite
sounds and a program to test the various sounds your Interact can make

is included with the SOUND entry in the Reference Section. We also discuss
sounds further along with FOR...NEXT looping.

The TONE command also produces sound through the TV speaker. It too is
followed by two values. The first specifies the frequency of the tone
to be generated, the second controls the length of the tone. Type

TONE 168,500

to hear a '"'middle C" tone lasting about three seconds. You can combine
tones of different pitches and durations to play musical tunes. For instance,
try typing the following TONE sequence:

TONE 168,200:TONE131,120:TONE110,150:TONE97,200:TONE131,75:TONE97,300

3y

Now, this command string will not all fit on one line on your TV screen.
Don't press the "CR" key at the end of a screen line--just let the command
wrap around to the next line on the screen. Be sure to separate the indivi-
dual TONE commands with colons.

If you happen to have a regular audio cassette handy, remove your BASIC
tape from the cassette drive and insert the music (or other)- tape. Depress
the READ cassette button, then type the REWIND command. The tape motor
turns on, and you'll hear the tape play through your TV speaker. Press

any key to stop the REWIND command and turn the tape motor off.

Functions

Before we leave direct mode and move on to indirect mode operation, let's
spend a little time with some of the built-in (intrinsic) functions in
Interact BASIC. These are more than 25 pre-defined operations that BASIC

can do for you. These functions fall into two general categories: arithmetic
functions and string handling functions. As the names suggest, arithmetic
functions are processes that return numeric values and string functions
return string data. The arithmetic functions by far outnumber the string
functions.

String handling functions allow you to manipulate strings in a variety

of way. EEEI$, RIGHT$, and MID$ let you isolate characters from within
a string. The INSTR$ function permits keyboard entry of a string of a

specified length and halts all processing until a string that length is
entered. STR$ converts a numeric value to a string value for output on
the screen in conjunction with other string values. The CHR$ function

returns the ASCII character for any given number.

2-9

The intrinsic arithmetic functions are commonly used mathematical operations.
Because these functions are built into BASIC, you can perform these operations
by simply calling the function in your program, rather than having to define
the sometimes complex mathematical code whenever you need to use it. This

not only saves you headaches in programming, it also saves space in your
programs.

Following is a table of the available mathematical functions and what they
compute.

FUNCTION RETURNS 27 Peelians =240 °
ABS the absolute value of the argument
ATN the arctangent of the argument in radians
COoS the cosine of the argument in radians
EXP the anti-logarithm to the base e of the argument
INT the largest integer that is less than or

equal to the argument

LOG the logarithm to the base e of the argument
NOT the bitwise complement of the argument
SGN the sign of the argument as 1 or -1
SIN the sine of the argument in radians
SQR the square root of the argument
TAN the tangent of the argument in radians
FRE the number of bytes of memory available

for program or string storage, as
specified by the argument

In direct mode, you can use these functions with your computer to simulate
a programmable calculator. For example, try typing the following scquence

of commands:

A =100
?ATN(A))
1.5608
?_LOG(A))
4.60517

2 CO
.862315
?SGN(A)
1
7SQR(A)!
10
2-10

You can also use a function call as an argument to another function call
where appropriate. For example, try typing

22026.5

We suggest you try the various functions in this way to become familiar
with their operation in BASIC. For more information on any of these arithmetic
functions, see the individual functions within the Reference Section.

There are also three numeric functions that perform operations on strings.

FUNCTION RETURNS

ASC the decimal code for a string one
character long

LEN the length of the string argument
in number of character spaces

VAL the string argument as a numeric value

The ASC function is commonly used in the conversion of string data to its

base numeric form for storage on tape. LEN is frequently used for positioning
of string data, as in centering, on the screen. VAL is the converse of

the STR$ function. We discuss these functions in further detail later

in the String Handling chapter and also individually in the Reference Section.

Another set of arithmetic functions provide control of information positioning
on the screen.

FUNCTION RETURNS
POINT the color of any given (x,y). screen
location
* POS character position where next character

will be displayed

* SPC the number of spaces specified in the
argument
* TAB a tabulation the number of spaces

specified in the argument before
printing the next character

* The POS, SPC, and TAB functions are used only as parameters on PRINT
statements, and they all affect positioning of printed information on the

screen or lineprinter hard copy.
See the individual Reference Section entries for further information on

using these functions in programs.

2-11

Then, there are several functions that are used for data entry, either from
the keyboard or the entertainment controllers. These functions are commonly
used in game programming.

FUNCTION RETURNS
INSTR$ a string of characters entered from the
keyboard of length specified by argument
JOYy a value corresponding to the position
of either entertainment controller joystick
lever
POT a value corresponding to the setting of

the potentiometer (pot knob) of either
entertainment controller

FIRE a value that indicates whether or not
the fire button on either entertainment
controller is depressed

See the Controller Input chapter and the individual function entries in
the Reference Section for details about and examples of using these data
entry functions.

One final intrinsic function...RND. RND is used to generate a random number

sequence for use within programs. See the Random Number Generation chapter
and the RND entry in the Reference Section for details.

User-Defined Functions

The DEF statement adds a powerful capability to BASIC-—it lets you define
your own functions for use within BASIC programs. With DEF, although a
function may not be intrinsic to BASIC, you can still reduce redundancy

in your program code by defining an operation for reuse. For example, let's
say you have the need to perform a certain calculation numerous times or

on numerous values in your program, such as squaring a number and dividing
the result by another value. Rather than performing the individual steps

of the calculation each time with statements such as

? A*A/B

27

you can define the operation as a function with the DEF statement and then
print the value. TIf you try to do this in direct mode, you will find that

it does not work ("?ID ERROR"). DEF can only be used for function definition
and use in indirect mode. So, let's enter a simple program that illustrates
performing the operation above from a user-defined function. 1In this program
we'll change the values of A and B after each function call. '

2-12

18 CLS

20 DEF FNC(C) = A%A-B
36 A = 135

40 B = A%5

S8 PRINT FMNC(C)

6B A=A+ 5

70 GOTO 40

In using DEF, the variable name you define to contain the function must
begin with the characters "FN!'. Other characters in the function name
are up to you. You may find it helpful to assign a variable name that
relates to what the function does. See the DEF entry in chapter 10 for
more information on user-defined functions. Appendix D contains a chart
of the code for other relatively common mathematical operations that are
not intrinsically defined in BASIC, but that can be included in programs
by using DEF.

INDIRECT MODE OPERATION

Now let's take a look at how the commands we've covered so far fit into
the other mode of programming your computer--indirect mode. Indirect mode
is the mode in which you write BASIC programs. You enter the commands

as line-numbered statements in a program. These statements just sit there
in your computer; they aren't executed until you type the RUN command to
start the program. When you type RUN, the statements in the program are
executed in the order specified by the sequence of line numbers or the
internal program logic, beginning with the lowest numbered line.

You can put any of the previous commands or function calls we've discussed
into a program by starting each line with a number. (Press the "CR" key
to conclude typing of each line.) Type NEW, then enter the following program.

10 CLS
20 PRINT "HELLO THERE!"

Now, type RUN. There, you have just written a computer program. Pretty
easy, huh?

You can add to this program merely by typing some additional lines. For
example,

30 PRINT
40 PRINT "GREETINGS FROM"
50 PRINT "YOUR COMPUTER"

Type RUN again to see the program run with the newly added lines.
What if you forget a command or want to add something else to the program.
Simple. You don't have to retype all the lines. Just add a new line on

an unused line number in a logical place in the line number sequence.
For example, you might want to change the display colors before printing

2-13

the message. Type a line numbered 15 that contains the COLOR instruction.
For example,

15 COLOR 1,0,3,7

Now, type the LIST command and see that your computer has put line 15 in
the correct place in the numerical sequence--between the CLS statement 1in
line 10 and the PRINT statement in line 20. Type RUN to see the new effect.

What if you notice an error in a line you've already completed by pressing
"CR'", or want to remove a line entirely? That's just as easy as entering

a new line. You correct an error in a line by retyping the line with the
same line number. For example, let's say we want two output two blank lines
between the messages instead of only one. We could do this by adding a

line numbered 25 or 35 that contains a PRINT statement, or we can retype
line 30 as follows:

30 PRINT:PRINT
Type LIST and see that the original instruction in line 30 has been changed.

You can also correct errors in program lines with the EZEDIT program editor
and its SUBSTITUTE command. SUBSTITUTE is particularly useful when you
need to make the same correction in a number of places in your program.

For example, if you decided you want to rename a variable such as A$ that
appears numerous times in your program to AB$, you could make the change
with a single SUBSTITUTE command in EZEDIT rather than retyping all the
lines in BASIC.

Program Listings

You'll find in programming that you will use the LIST command more often

than any other command, even RUN. As few people can write a program that

runs error—-free the first time, LIST is important for correcting errors,

or ''debugging', your programs. When you type LIST, your computer reads

back to you all the program lines you've entered, in the correct sequential
order, beginning with the lowest numbered line. However, you can control

the beginning line of the listing by adding a line number to the LIST command.
For example, if in executing a long program, you find there's a syntax crror
in line 530 ("?SN ERROR IN 530"), you don't really want to see all the preceding,
error-free lines. 1In that case, type [BCHWBRIY, and your program listing

will begin at line 530.

Since most programs are more than just a few lines long, you'll find that

the lines scroll off the screen faster than you can read them during a listing.
You can avoid the frustration of having to list the program over and over

by using control characters to halt the listing. A control character is

the combination of the Control key and another key, pressed simultaneously.
Use:

Control-S to freeze the listing temporarily. Listing
continues when you depress any key.

Control-C to halt program listing completely. Listing is
not restarted until another LIST command is given.

2-14

—

Note that when you type either of these control characters, BASIC completes
printing the line being listed at the time the control character is entered
before halting the listing. Control-C and Control-S can also be used to
halt program execution during a RUN command.

Now, as an exercise, we suggest you go back and put some of the previous
examples in the Direct Mode section into indirect mode programs and RUN
them. You should get the same results as when you executed the commands
in direct mode.

Multiple Statements on a Single Line

As we've previously illustrated, you can chain statements together on a
single line. This is useful for compacting programs, in particular, sections
of a program that are not likely to be changed. Because the line numbers

in a program also consume memory, combining statements on a single line

can save space. In your initial programming efforts, you will probably

find it easier to put statements on separate lines, especially if you are
experimenting with different values in timing loops or TONE statements.
Although putting statements on separate line numbers uses more RAM, there's
less retyping involved to make changes or corrections in the lines.

BASIC does not have a line renumbering capability. The EZEDIT program

editor does, however. 1In its resequencing and appending operations, EZEDIT
renumbers the lines in your program in increments of 10, that is, 10, 20,
30,... It also changes the first line reference in any program line to
reflect the new line numbers. If you intend to use EZEDIT to resequence

or append programs, do not chain more than one statement with a line reference
(e.g., GOTO, GOSUB) on a single line. Because EZEDIT only handles the

first line reference it encounters in any one program line during renumbering,
any additional line references on the line will have to be changed indi-
vidually to reflect the new line numbers. To avoid the work involved in
tracking down and changing line references after resequencing, put line
references on separate lines. For example, don't type

80 PRINT A;B$:GOSUB 500:GOTO 10
Do type

80 PRINT A;B$:GOSUB 500
90 GOTO 10

The same effect is achieved, and you won't be required to make correcttions
when renumbering lines using EZEDIT.

There will be, however, instances in which you will not be able to avoid
multiple line references, particularly with IF...THEN or ON conditional
constructions. In those cases, make a note of occurrences and change the
multiple line references with the EZEDIT SUBSTITUTE command after you resequence
your program.

2-15

Program Execution

You normally begin execution of a program by typing the RUN command.

RUN

starts the program at the first program line and resets all variables to

Zero.

However, there are two other methods of executing a program, both

of which are used to start execution at a higher line number in the program.
This can save time in debugging parts of your program, because you can avoid
having to execute other, unaffected, parts of your program.

The first method uses the GOTO statement.
program control to a specified line number.
mode to start program execution at a specific point.

In indirect mode, GOTO transfers
You can also use GOTO in direct
When GOTO is used

in this way, all program variables remain the way they were set during previous

program execution (unless you have reset them in direct mode).
let's enter the following program.

the color setting.

For example,

First, type [HUHI:GEPWINEY® to change

1@ CLS

15 COLOR 6,7,4,0

17 A = 97

18 B=50

280 PRINT "HELLO"

38 PRINT" .":TONE A,B
4@ PRINT" .":TONE A,B
58 PRINT" .":TONE A,B
55 PRINT:PRINT

60 PRINT“THIS IS"

70 PRINT"YOUR COMPUTER"
80 PRINT "SPEAKING"

Now, execute this program by typing RUN.

When the program finishes and

you see the '"OK'" prompt, execute it again, only this time type

0TO 20

Note that the program runs just

as it did before, except that the screen

is not cleared because you instructed your computer to skip that step.
You also skipped lines 15, 17, and 18, but the COLOR statement and the variables

A and B remain initialized from
change the value of a variable,
a RUN command to make sure that

You can also begin execution in
number. With RUN, however, the
regardless of whether you start
other line.

COLOR 1,3,0,7
RUN 20

the previous program execution. If you
execute the program from the beginning with
variable gets reinitialized.

mid-program with the RUN command and a line
variables are automatically reset to zero,
with the first line in the program or some

Change the color setting and execute the program again by typing

Note that in this execution of the program, the screen color does not change
and the screen is not cleared because those lines with the RUN 20 command.

2-16

The tones accompanying the printing of each period (".") are also much
higher pitched and much longer. This happens because the variables A and
B were reset to zero when you executed the program with RUN, and the TONE
statements in lines 30-50 are actually processed as TONE 0,0. In general,
to avoid problems resulting from reset variables, we recommend using GOTO
to begin execution in mid-program rather than RUN with a line number.

Keyboard Input to Programs

As we stated in the BASIC Basics chapter, there are a number of ways to
get data into your program--with entertainment controller functions, from
tape with the CLOAD command, with DATA/READ statements in the program.
These other methods are discussed at length in other places in the manual.
We are immediately concerned with input from the keyboard.

Keyboard input can be obtained in two ways—--the INPUT statement and the
INSTR$ function. With both operations, your computer takes input from
the keyboard and stores it in a variable.

The INPUT statement causes your program to stop and wait for data entry
from the keyboard. INPUT prints a question mark on the screen to let the
user know that input is expected. Further program execution is halted
until the computer receives a "CR" to enter the value. With INPUT, you
direct your computer to store the value entered in either a numeric or
string variable, as appropriate for the data being entered.

The following program takes input from the keyboard, stores it in the named
variables, processes it, and then outputs the results of the processing

on the screen. In this program, we'll ask for the user's name, height

in inches, and weight in pounds, then convert inches to centimeters and
pounds to kilograms for the final display.

18 CLS

28 COLORG,7,4,0

30 PRIMT"WHAT' S YOUR"

48 INPUT*NAME" ; N®

50 CLS:PRINT"HELLO, ";N$

50 PRINT:PRINT"HOW TALL ARE"
78 PRINT"YCU IN INCHES*®

80 INPUT IN

98 PRINT:PRINT"HOW MUCH DO YOU"
108 INPUT"WEIGH®;LB

1180 CM=2.54%IN

1280 KG=LBs2.2

138 CLS

1489 PRINTNS$;", YOU ARE"

150 PRINTCM

160 PRINT"CENTIMETERS TALL"
176 PRINT"BUT YOU WEIGH"
188 PRINT"ONLY";KG

198 PRINT"KILOGRAMS!*®

195 FORP=1T02000: NEXT

200 CLS:G07030

Notice that you can use the INPUT statement with or without a string constant,
as shown in lines 80 and 100. TIf you execute this program, you'll see that
an INPUT statement that contains a string constant is visually different
from one without a string constant. Without a string, the INPUT question
mark prompt appears on a line alone. 1If you include a string, the ? prompt
is on the same line as and immediately follows the string. If you use INPUT
and a string, separate the string and the variable for storage with a semi-
colon. 1If you don't use a string, do not put a semi-colon between the INPUT
keyword and the variable name. Generally, we suggest you do use a string

to reduce confusion for the user and to indicate what kind of data is being
requested.

You'll find that BASIC will let you enter numeric data and store it in a
string variable. The reverse is not true, however. If you try to enter
string data, such as a name, in response to an INPUT query for numeric data,
the message

?7REDO FROM START

prints, and the INPUT prompt reappears. Execute this metric conversion
program and type a number when it asks for your name and your name when
it asks for your height to see this illustrated.

The other method of keyboard data entry is the INSTR$ function. Because

it is a string function (ends in $), data entered in response to the INSTR$
function can only be stored in a string variable. With INSTR$, you specify

the length (in number of characters) the entered string is to be. For example,

200 A$ = INSTR$(2)

within a program causes the computer to stop and wait for entry of two characters

from the keyboard before continuing program cxecution. With INSTR$, the
screen remains unchanged--no '"?' prompt appears to signal that input is
required--and the "CR" key is not required to enter the string. Program
execution automatically proceeds when the specified number of characters
have been typed. Because the screen is undisturbed with this data entry
method, it's a good idea to generate a tone or two just before calling the
INSTR$ function, to let the user know that input is needed.

Although this function can technically only handle string data, you can

use it indirectly to enter numeric data. Because numeric data can be entered
as string data, you could accept entry of a number with INSTR$, then convert
the numeric string to a numeric value with the VAL function. You could

then perform arithmetic operations on the value. See the String Handling
chapter for more information on this type of operation.

The INSTR$ function is commonly used as A$ = INSTR$(1) to input "yes'" or
"no'" (true or false) information on which your computer bases a decision
to branch to another part of the program. We'll talk more about this in
Conditional Relationships later on in this chapter and along with the IF
statement in the Reference Section.

Internal Program Documentation

You can document program operations within the program by entering REM
(remark) statements. REM statements are not actually executed when you
RUN your program. REM lines are included merely to document your program
logic. BASIC considers everything following a REM keyword on a line to
be documentation, so never chain multiple statements on such a line. If
you do, the statements will never be executed.

We also recommend that you don't branch or loop to a REM line with a GOTO
statement. REM lines take up considerable RAM, and, as your program grows,
they may have to be removed to gain additional programming space. If you

GOTO a REM line, then remove that REM later on, you will get a "?UL ERROR"
when you execute the program, unless you first correct all the GOTO references
to the REM line. So, to avoid necedless retyping, pass program control

to the first statement on the line immediately following the REM line.

To illustrate the use of REM statements, we have annotated the previous
metric conversion program. If you add those lines, then execute the program
again, you'll sece no difference from the previous operation.

18 CLS

20 COLORB,7.4,3

25 REM ENTER NAME

38 PRINT"WHAT" S YOUR"

40 INPUT"NAME" ; N%

580 CLS:PRINT"HELLO, ";i;N$

55 REM ENTER HEIGHT AND WEIGHT DATA
60 PRINT:PRINT"HOW TALL ARE"

70 PRINT®*YOU IN INCHES®

830 INPUT IN

90 PRINT:PRINT"HOW MUCH DO YoUu"
168 INPUT"WEIGH" ;LB

165 REM CONVERT HEIGHT AND WEIGHT TO METRIC EQUIVALENTS
1189 CM=2.54%IN

120 KG=LBr2.2

138 CLS

135 REM DISPLAY CONUVERTED VALUES
140 PRINTN®:", YOU ARE"

158 PRINTCM

160 PRINT“CENTIMETERS TALL"

170 PRINT"BUT YOU WEIGH"

1860 PRINT"ONLY";KG

190 PRINT"KILOGRAMS! "

134 REM PAUSE LOOP

195 FORP=1T02000: NEXT

197 REM START OUVER AGAIN

208 CLS:G0TO39

—

Conditional Relationships

Within a program, you can tell your computer to make a decision about program
execution based on the result of testing a condition. Any condition always
tests as either 'true" or '"false'. A condition can test for equality, non-
cquality, greater than, or less than, using the relational operators listed

in the BASIC Basics chapter. The statements used to test conditional relation-
ships are IF...GOTO, IF...THEN, and ON.

IF...GOTO tells your computer to transfer program control to the first statement
on a specified line, if the given condition tests to be true. For example,
consider the following program. It asks the user to select a color by pressing
a single key. The IF statments test the value of the l-character string
entered with the INSTR$ function. If the value tests true on any of the

IF statements, the GOTO statement on that line is executed, and program

control tranfers to the specified line. This program also illustrates testing
the result of an INSTR$ function to test for a "yes/no" answer, in this

example, to decide whether the program is to be executed again or not.

19 CLS:COLOR®,3,1,7

28 OUTPUT“COLOR", 48,67, 1

33 OUTPUT"TEST PROGRAM", 25,60, 1

35 WINJOWSS

4@ PRINT"CHOOSE A COLOR:"

50 PRINT"1=RED 2=GREEN"

BB PRINT"B=BLACK 7=WHITE"

70 PRIMT"6=CYAN 3=YELLOW"

89 PRINT"4=BLUE GS=PINK"

98 TONE128, 50: TONES4, 50

95 A$=INSTRS(L)

6@ IFA$="1"GOTO300

110 IFA$="2"GOTN440

126 IFA%="3"GOTO400

138 IFAS="4"GOT0326

143 IFA$="5"G0T0420

158 IFA%="6"G0TO233

160 IFA$="7"GOTO360

170 IFA%$="0"GOT0348

399 CL5:COLORL,3,1,7:0UTPUT"RED", 48,60,3:G0T0500
322 CLS:CCLOR4,3,1,7:0UTPUT"BLUE", 46,608,3:G0TOS00
34% CLS:COLOR®,3,1,7:0UTPUT"BLACK", 42,608, 3:G60T0500
36& CLS:COLCOR7?,3,7,1:0UTPUT*WHITE", 42,58,3:G0T0500
280 CLS:CGLORG,3,1,7:0UTPUT"CYAN", 43,60, 3:G0TO500
483 CLS:COLOR3.3,1,7:0UTPUT*YELLOW®,37,60,3:60T0500
428 CLS:COLORS,3,1,7:0UTPUT*PINK", 43,60, 3:G0T0500
44@ CLS:COLOR2,3,1,7:0UTPUT"GREEN", 42,60, 3

500 FORP=1TC100@: NEXT

505 CLS

518 OUTPUT*AGAIN?",35,60, 3

520 A%E=INSTR$(1)

530 IFAS="Y"GOTC1O

548 IFA$="N"GOTOB0O

558 GOT0520

500 CLS:OUTPUT*THANK YOU",25,60, 1

2-20

There's only one problem you might encounter when you execute this program.
If you type a character other than O through 7, line 100 is executed.

This happens because none of the IF statements tests true, so execution
continues with the first statement following the conditional testing.

To avoid this problem, we'll tell the computer to return to the INSTR$
function if none of the conditions tests true. Type

180 GOTO 95

then RUN the program again and try to repeat the problem. You'll see that
the computer no longer accepts any key except O through 7.

IF...THEN statements also test conditional relationships. If a relation
tests true, the computer executes all statements chained following the
THEN portion of the statement. If no statement that transfers program
control appears following THEN, program control passes to the next higher
line number after the chained statements have all been exccuted.

We could change the previous program to use the IF...THEN construction

by changing lines 100 through 180 as shown below, and completely removing

lines 300-440. This makes the program considerably shorter, as you can

see. If you make these changes, then execute the program again, you won't
notice any operational difference. This illustrates the fact that you

can use a variety of styles in programming. There is no real '"right" way

to program, just as there is no 'right' way to express a thought in a language,
as long as the syntax is correct.

18 CLS:COLOR 0,3,1,7

28 OUTPUT *“COLOR",40,67,1
38 OUTPUT *"TEST PROGRAM*,25,68,1
35 WINDOW 55

4@ PRINT "CHOOSE A COLOR: "
560 PRINT"®1=RED 2=GREEN"
60 PRINT"8=BLACK 7=WHITE"
70 PRIMT"6=CYAN 3=YELLOW"
80 PRINT"4=BLUE S=PINK"
98 TONE 128,50: TONE 394,50
95 A% = INSTR$(1)

169 IF A% = "1" THEN CLS:COLOR 1,3,1,7:0UTPUT "RED",48,608,3:G0OTO 500
118 IF A% = "2° THEN CLS:COLOR 2,3,1,7:0UTPUT "GREEN",<0,60,3:G0TO 500
120 IF A% = "3" THEN CLS:COLCR 3,3,1,7:0UTPUT "YELLOW",36,60,3:GO0TO 500
1380 IF A$ = "4" THEN CLS:COLOR 4,3,1,7:0UTPUT "BLUE",44,60,3:GOTO 500
146 IF A% = "S" THEN CLS:COLOR 5,3,1,7:0UTPUT "PINK",44,60,3:G0TO 500
150 IF A% = "6* THEN CLS:COLOR 6,3,1,7:0UTPUT "CYAN",44,60,3:G0TO 500
1686 IF A% = "7* THEN CLS:COLOR 7,3,7,1:0UTPUT “WHITE",48,68,3:G0TO 500
170 IF A% = "G" THEN CLS:COLOR @,3,1,7:0UTPUT "BLACK",40,60,3:G0TO 500

180 GOTO 95
500 FOR P = 1 TO 1800:NEXT

etc.

=

P

So, how do you decide whether to use the IF...GOTO or IF...THEN construction?
In many cases, it doesn't make much difference which you use. 1In general,
though, use 1F...GOTO if you want program control transferred to another

part of the program if a given condition is true. Use IF...THEN if you

just want to execute a short series of statements if the condition is true.
Note that you can use GOTO in conjunction the IF...THEN construction if

you want to transfer program control after executing some other statements.

¢.’

You can also combine conditions to be tested during execution of an IF state-
ment with either of the BOOLEAN operators——-AND and OR.

If you use the AND operator, you tell your computer to execute the GOTO
or THEN statements only if all the conditions given are true. If you use
the OR operator, at least one of the given conditions must be met for the
GOTO or THEN statements to be executed. You can test up to 5 conditions
at a time with AND and OR, and you can combine AND and OR tests within a
single IF statement.

The following program tests for depression of the fire button on either
the left OR right controller (line 30). If either fire button is depressed,
program control transfers to line 50.

19 CLS:COLCR 4,7,3,7 .

20 OUTPUT"FUSH FIRE BUTTON",10,60,1
380 IF FIRE(®)=0 OR FIRE(1)>=B GOTC 50
40 GOTO 30

580 CLS:PRINT“FUN ISN'T IT"

68 FOR G=1 TO 99939:NEXT

70 GOTO 10

Our next example illustrates conditional testing with the AND operator.
It's not a complete program, but it demonstrates how to test to determine
if a number is within a specified range, in this case, 1-12.

19 CL5:COLCR 7,1,4,2

20 PRIMT"ENTER MONTH="

30 INPUT ™M

35 M=INT(M?}

40 IF M>0 MMD M<{13 GOTO 6O
45 PRINT"BAD MONTH CODE"
580 GOTO 20

e0 REM ETC., ETC.

Look Before You Loop

How do you re-execute a part of your program more than once without retyping
all the lines again? We've already seen that we can use the GOTO statement
to loop through a set of instructions multiple times. The problem with
using GOTO statements for looping is that they can create what are called
"infinite loopsh. That is, the program will execute the statements again
and again and again, until you halt execution by typing Control-C. This

is fine if you want your program to loop indefinitely, but what if you

want to perform an operation five times and no more? In this case, the

GOTO statement may be replaced with a different kind of looping--the FOR...NEXT

loop.

FOR and NEXT are a pair of instructions that define the beginning and ending
points of a loop, respectively. Any statements within the loop will be
executed as many times as specified in the beginning FOR statement. 1In

the Direct Mode Operation section of this chapter, we gave a simple example
of using a FOR...NEXT loop to draw a line:

FOR X = 1 TO 112:PLOT X,50,2:NEXT

In this set of instructions, X is the iteration variable. The iteration
variable acts as a loop counter—-its value is incremented in steps of 1
each time the statements in the loop are executed and the NEXT statement
is reached. 1 is defined as the starting value of X and 112 is defined
as its highest value. When the loop counter reaches the maximum value,
looping ends, and the statement immediately following NEXT is executed.
In this example, we also use X as the x-coordinate in the PLOT statement.

The NEXT statement identifies the end of a loop iteration. NEXT increments
the value of the iteration variable (loop counter). It also contains an
implicit GOTO statement that sends program control back to the originating
FOR statement, unless the iteration variable is equal to or exceeds the
ending value of X.

The following simple program illustrates looping even more clearly.

10 FOR' I =1 TO 10
20 PRINT "HELLO"
30 NEXT I

RUN this program and you'll see the word HELLO print on your TV screen
ten times. After the tenth printing of HELLO, the program ends.

In an earlier example (Program Execution, page 2-16), we gave three identical
PRINT commands on three different lines. You can see now that this was
really a waste of space and typing--we could have combined all thrce state-
ments into a FOR...NEXT loop, as follows:

2-23

¥ CLS:COLOR 6,7,4,0

15 A = 87

17 B = 50

286 PRINT "HELLO"

38 FOR I =1 TO 3

40 PRINT " .":TONE A,B

58 NEXT I

60 PRINT:PRINT

780 PRINT"THIS IS YOUR"

80 PRINT"COMPUTER SPEAKING"

An even simpler form of looping is used to control program timing. It's
called the pause loop. In pause loops, you simply give the beginning FOR
and ending NEXT statements without any other statements in between:

200 FOR P = 1 TO 500:NEXT

Essentially, what you are telling your computer is '"Go do nothing 500 times,
before you do anything else.'" Pause loops are particularly useful for holding
visuals on the screen long enough so that they can be fully appreciated,

or instructions long enough to be read.

What goes inside a loop and what stays out? This is very important for

the successful execution of a program containing loops. If you don't have
everything you need in the loop, of if you have statements included that
shouldn't be there, your program will not do what you want it to do. Put
only those statements in a loop that you want re-executed on each iteration
through the loop. 1Initialization assignments of variables with values to
be incremented during the loop, for example, should not be included in the
loop. If you do include them, the variables will be reinitialized each
time instead of incremented. As an example, enter the following program.

18 CLS

20 COLORG6,4,7,0

30 X=55

40 Y=38

50 XL=5

60 YL=4%

780 FORC=1TO3

32 PLOTX,VY,C,XL,YL
890 X=X-2

189 Y=Y-2

118 XL=XL+4

1280 YL=YL+4

125 FORG=1T0100:NEXT
130 MNEXT

149 IFY>=6G0TO70
15@ GOT01.

This program requires Microsoft 8K BASIC. It draws a series of progressively
larger squares on the screen by incrementing the (x,y) coordinates and

X and Y lengths of each plot within the loop. Note that the initial values

of X, Y, XL, and YL are¢ defined outside the loop. If you put them inside

the loop, the same size square will be redrawn over and over again. Find

out more about using FOR...NEXT loops for graphics development in the Graphics
chapter.

The uses for FOR...NEXT loops are virtually infinite. They can be used
for graphic image development, putting pauses in programs, controlling
data entry, performing calculations, etc. You'll find that almost every
program you write will contain at least one FOR...NEXT loop.

Let's look at a data entry example. The following program scegment might
be used in a game program in which you want to input four players' names,
then randomly choose onc of them as the first player in the game.

18 CLS:COLOR7,4.8, 1

ZB WINDOWSH

30 OUTPUT"PLAYER HWAME",18,58,1
35 FORI=BTO3* ¢ s t..(

40 INPUTMNECTD

58 MEXT

50 F=RND(1i%4

65 WINDOW77:CLS

70 OUTPUTNSC(F 3,56-LENCN®(F)). 256,55, 1
88 OUTPUT"GOES FIRST",25,45,1
28 A%=INSTR#(1):G0T010

This program takes in four names within the loop and assigns them to the
variables N$(0), N$(1), N$(2), and N$(3). (Note that you can store more

than one data value in one variable name by using subscripts to the variable
name.) The program then tells the computer to choose a number between

O and 3 to determine which player goes first. Statements on lines 60 through
80 are not executed until after looping completes.

FOR...NEXT can be embedded, or ''mested', within other FOR...NEXT loops.
For example,

18 CLS

20 COLOR1,0,6.7

3@ FOR X = 40 TO 70

48 FOR ¥ = 6@ TO 39 STEP -1
5@ PLOT ¥,%,3

B3 NEXT:NEXT

I

Note that the starting variable need not be 1. The starting value merely
defines what the initial value of the iteration variable is to be. In
this case, we want to start our plot 40 pixels from the left edge of the
screen. The starting variable can be less than the ending variable, as

2-25

illustrated in line 40, for '"backwards' looping. For backwards looping,

you must use the STEP option with a negative value to specify negative incre-
mentation of the iteration variable. Change line 40 to read

40 FOR Y = 60 TO 30 STEP -2

and run the program again. This time, a set of vertical stripes will be
drawn on the screen.

The STEP option specifies the incrementation of the iteration variable.
If STEP is not included on the FOR statement, your computer assumes you
mean STEP 1. If you add a different incrementation value in line 30,

30 FOR X = 40 TO 70 STEP 2

and run the program another time, you'll see a pattern of dots appecar on
the screen.

In the previous example, both FOR...NEXT loops concluded at the same point.
This need not be the case, however. You can and will insert other statements
between the end of a nested (or inner) loop and the end of an outer loop.

The following program illustrates a FOR...NEXT loop that contains two nestcd
loops. The second nested loop is executed between the end of the first
nested loop and the end of the outer loop.

1@ CLS:COLOR®,2,1,6
20 FORN=1TO3

30 INPUT"“NAME" ;N$

40 CLS:OUTPUTHMS,S56-LEN(NS)/2%E, 45, 3
5@ FORC=1TG1O

80 COLORG,2,6,1

70 TONE?E, 25

80 COLOR®,2,1,6

99 TONE?6. 25

188 NEXTC

118 FORP=1T0150:NEXTP

128 CLS:NEXTN

The outer loop is the data entry loop (N). When a string is entered, then
the color loop (C) is executed, followed by a pause loop (P), then the next
iteration of the data entry loop.

Inclusion of the iteration variable on the NEXT statement is completely
optional. As your programs increase in size, you'll find that elimination

of this extra character gains you a couple more bytes of RAM and helps compact
the program. We've included them in the previous examples for the sake

of logic clarity.

You can also use loops to combine sounds or tones in your programs. The

next two examples illustrate how FOR...NEXT loops can be used to add amusing
sound effects to a program execution.

2-26

The first program plots a dotted, diagonal linc down one side of the screen
and up the other. As it plots, the computer produces tones that slide
up and down the scale in accompaniment.

18 CLS

28 X=10

30 FORY=607T020STEP-1
480 PLOTX,Y,2
58 TONEX,Y

55 x=X+1

68 NEXT

65 Z=X

78 FORY=2BTO6O
880 PLOTX.Y,1
30 TONEZ.¥

188 X=X+1

185 Zz=z-1

118 NEXT

120 GOTO10

Our sccond example creates a series of continuously changing sounds from
within two loops, onec of which is nested in the other.

18 CLS

20 PRINT"LISTEN TO ME..."
38 FOR Y= 1 TO 480880 STEP S5
35 FOR X=8 TO 7

48 SOUND X,Y

S8 NEXT:NEXT

Try increasing or decreasing the STEP parameter in line 30 for different
sets of sound effects.

The value of the iteration variable can be sensed within a loop and its

value used as a condition on which to base a program logic decision. However,
NEVER change the value of the iteration variable within a loop, or your
computer can get hopelessly confused.

As an example of sensing the value of the iteration variable, let's say
we want part of a program to allow entry of up to six lines of text for
display elsewhere in the program. However, we want the user to be able
to enter fewer than six lines as well. You might set up such a program
as follows:

2-217

18 CLS:COLOR2,3,7,0

28 OUTPUT"ENTER UP TO 6°,15,65,2
38 OUTPUT*LINES OF TEXT",18,57,2
480 OUTPUT"STCP BY TYPING®, 15,45,2
580 OUTPUT"END".47,37,3

68 FORI=1TO6

78 INPUT T$C(I)

80 IF T$(I)="END" OR I=6 THEN N=I-1:G0T0200
98 NEXTI

288 CLS

205 FORP=1TON

210 PRIMTTS(P)

220 MEXT

At the end of cach loop iteration, your computer tests to see if it was
the last iteration through the loop or if the string entered during that
iteration is "END'". 1If either of those conditions is met, looping ends,
and execcution of the rest of the program proceeds.

In several of the previous examples, we've stored values in subscripted
variables (e.g, N$(0), N$(1), T$(I)). BASIC has ten automatically defined
slots within any variable that can be used to store data associated with

that variable. These slots form what's called an array. Arrays provide

a convenient method of storing data that is related in some way. Let's

leave FOR...NEXT loops now and move on to a discussion of arrays and their
dimensions. If you're still confused about using FOR...NEXT loops in programs,
review this section again. But, because looping is so widely used in program
logic, you'll see plenty more examples that illustrate looping in conjunction
with other operations as we go along.

Arrays —— Putting Data in Its Place

So far, our walk through BASIC has focused on the manipulation of information
which is made of a single part. We've seen how to manipulate numbers by
using them as constants or giving them variable names. We've seen how we

can manipulate a group of letters by using it in a string constant or storing
it in a string variable name.

However, data often consists of information that is made up of several parts.
In everyday terms, we call this information '"lists'". We have lists of phone
numbers, part numbers, names and addresses of friends, etc. In BASIC we
call these lists dimensioned arrays. We refer to a particular data element
in an array as a subscripted variable.

As an example, let's suppose you want to write a program to keep track of
your total family cxpenses over a twelve-month period. One approach would
be to name 12 variables (TE1, TE2, TE3,...TE12 —— one for each month), and
work with them individually. However, you would find that your program
would grow large and cumbersome very quickly. Let's say we want to keep
track of the total expense for each month and determine what percentage

2-28

each month is of the grand total. First, we'd define 12 variables to store
the monthly totals:

10 TE1 849
20 TE2 569
30 TE3 = 723

Il

120 TE12 = 1248

Then, we'd have to calculate the yearly total (YE).
130 YE = TE1 + TE2 + TE3 + ... + TE12

And, to calculate the monthly percentage of total, we'd have to do a separate
instruction for each calculation:

140 P1 YE/TE1
150 P2 = YE/TE2
160 P3 = YE/TE3

|

260 P12 = YE/TE12

You can sce that this is already starting to get complicated. We're generating
lots of variables, using lots of lines, and we've only done one major operation.
In lines 140 through 260, the same operation is being pe¢rformed on each

month. Since many operations in a program like this would conceivably

be the same for any given month, there must be a better approach.

And, there is. Fortunately, in BASIC we have the concept of a dimensioned
array. A dimensioned array lets you work with this type of data in ccmpact
BASIC statements. This simplifies the programming task and also reduces
the amount of RAM used.

Let's consider instead a total expense variable, called TE, that has 12
associated values—-one for cach montk. When working with a list or array
like this in a program, you first need to tell BASIC how many values will

be asscciated with that variable name. You do this with the DIM (dimension)
statement. For example, enter

20 DIM TE(12)

This tells the computer ttat 12 storage slots are to be reserved for usc
by the variable named TE. It says nothing about the contents of the slots.
That information is specified later on in the program.

The DIM statement for an array is executed orly once in a program, usually
at the beginning. Numeric and string arrays are dimensioned in the same
way. You car cimension several variables in one DIM statemert. For example,

25 DIM TE(12),EC$(6),A(50)

2-29

You can, of course, use separate DIM statements if you prefer.

If you do not dimension a variable before you reference it, you'll find

that BASIC automatically reserves 10 clots for the variable. Two examples

of using automatically dimensioned arrays were given in the previous FOR...NEXT
looping discussion. In practice, it's a good idea to dimension all variables
that you'll be using as lists by entering a DIM statement. If you forget

to dimension an array and try to reference above the 10th subscript, you'll

get a "?BS ERROR" (bad subscript).

In dimensioning arrays, be careful not to specify more storage than you
actually need, because your computer can quickly run out of memory. The
following program, for example, will return a '"?0M ERROR" if you try to
execute it. It's simply too large for your Interact to handle.

10 DIM A(1500)
20 PRINT '"HELLO"

To reference a value stored in an array (an item on our list), we use the
variable name followed by a subscript in parentheses. Going back to our
family expense problem, we've dimensioned the total expense variable into
12 slots, one for each month, with the statement

20 DIM TE(12)

If we wanted to see what was stored in the slot for April, we'd call the
TE variable with the 4th subscript:

PRINT TE(4)

Subscripts can also be variables. 1In particular, they are often the same

as the iteration variable in a FOR...NEXT loop used to index through an

array. The following example computes the yearly total by incrementing

the variable YE (yearly expense) by the value of ecach month. YE is initialized
as O.

298 YE=0

388 FOR M=1 TO 12

318 YE=YE+TEC(M)

328 NEXT

338 PRINT"YEARLY TOTAL";YE

I1f we wanted to perform the percent of total calculations we did earlier
with separate variables, this process could also be done within a loop.
An array to contain the percentage figures must also be dimensioned.

30 DIM P(12)

4—0(-)
See that the calculation from a loop is much simpler than using individual

statements for calculations.

2-30

508 FOR M=1 TO 12
518 PIM) = YE/TE(M)
520 MEXT

Two-Dimensional Arrays

Arrays can have more than one dimension. In familiar terms, a two-dimensional
array is a table with rows and columns. Each position in the table can

have an associated data value. Extending our previous example, let's assume
we have five expense categories--food, housing, auto, computers, and total
expense——for each month in a twelve-month period. You can store all this
information under a single variable name in a two-dimensional array. You
could dimension this array as follows:

20 DIM TE(5,12)

We have now defined TE as a table that has 5 rows (one for each of the
categories) and 12 columns (one for each month). Our choice of rows (the

first subscript position) to represent the categories and columns (the

second subscript position) to represent the months is arbitrary. The statement

20 DIM TE(12,5)

would have worked equally well. However, all subsequent referencing of
an array must be consistent with how it is defined in the DIM statement.

The number specified in the DIM statement is the highest subscript that
can be used in referencing that dimension of the array. The DIM statement
actually allocated one more slot than is indicated in the DIM argument.
DIM A(12) really allocated 13 slots, A(0) through A(12). Similarly, in
two-dimensional arrays there is a zeroth row and a zeroth column. You
can use these zeroth slots for storing other data related to the array,
such as row and/or column totals.

You can compute values associated with slots in an array by using other
information stored in the array. In our family expense problem, we could
compute the total expense for each month by adding the values in the other
four categories. We'll store the value obtained in the 5th row, using
FOR...NEXT loops.

18 DIM TE(S5,12)

BBB FOR M =1 TO 12

518 FOR R = 1 TO 4

6280 TE(5,M) = TE(5,M) + TE(R,M)
638 NEXT R

648 NEXT M

The subscripts in a variable reference select which data value from the

array is to be referenced. BASIC always interprets subscripts as integers.
Subscripts cannot be negative, and they must be less than or equal to the
maximum subscript declared for that dimension in the associated DIM statement.

2-31

The following "Temperature Tracker'" program illustrates using a two—-dimensional
array to collect daily low and high temperatures for seven days, then computes
the average low and average high temperature for that week.

i9 DIM T(7,2)

28 CLS:COLOR 4,3,08,7

38 OUTPUT" DAILY TEMP.",108,66,1
48 OUTPUT"DAY LOW,HIGH",16,58,2
50 WINDOW 50

55 REM- INPUT DAILY LOW AND HIGH
68 FOR I=1 TO 7

780 PRINT I;

30 INPUT T(I,1),T(I,2)

98 NEXT

95 REM- SUM THE LOWS AND HIGHS
1880 FOR I=1 TO 7

115 FOR J=1 TC 2

1280 T(G,J)i=T(O,T)+T(I,J)

138 NEXT:NEXT

135 REM- COMPUTE AVERAGES

1480 LOW=T(B, 137

1520 HIGH=T(Q,2)/7

155 REM- REPORT

168 CLS

170 PRINT"AVUG. LOW":PRINTLOW
1880 PRINT"AYG. HI “:PRINTHIGH
196 PRINT

Higher Dimensional Arrays

In BASTIC, an array can have as many as five dimensions or subscripts. When
might you use a three-dimensional array? Consider the implementation of
a 3-D Tic-Tac-Toe game. You might want to use an array dimensioned as follows:

10 DIM A(3,3,3)

to represent all twenty-seven cells in the game. The value associated with
any particular cell in the game cube would indicate if an "X'" or "0" (or
neither) had been placed in that cell.

A(1,1,1)————————*z:ffgéééigéfézzj
A(2,1,2)——-———22i£§§é§g£§;;;7

2-32

A four-dimensional array might be used for keeping track of dollar sales
by product, by store, by department, over time.

A five-dimensional array might be used to track sales by product, by district,
by office, by salesperson, over time. However, an application that size
cannot realistically be visualized for the Interact with its current memory
limitations.

Entering Data into Arrays

Most programs that process numeric data in arrays contain some mechanism
for entering the data. In our previous family expense problem, if you
used the PRINT command to disply values stored in the array, all values
returned would be zero. That's because we never entered any data values
into the array for the program to work with.

The most straight-forward approach to data entry is to accept data the
user enters from the keyboard in response to INPUT statements. Here are
some guidelines as to how this can be accomplished efficiently and painlessly.

1) Prompt the user as to what data is being requested. You can do
this by interleaving PRINT and INPUT messages, or by supplying
the prompt information as a string within the INPUT statement.

2) Ask for the data in a logical order.

3) Immediately check to verify that the data is reasonable. Unreasonable
data might be a negative value or an excessively large value.
Prompt for the data item again if there is any question as to its
validity. Allow the user to reenter part of the data if he finds
an error.

4) Ask only for data that the program can't assumec. For cxample,
if you have an array with 300 slots defined for product sales
information, but you only have 35 products with non-zero sales
information, prompting for all 300 values consumes needless time
and effort. Allow entry of the non-zero information and product
code on the same line, separated by a comma, e.g., PC,595.

On the next page is a portion of a program that accepts family asset information
for processing. Each asset category is stored in a position of the "A"
array. On examining this program, you'll find that a WINDOW statement

keeps the "ENTER ASSETS'" instructions visible at all times. Each asset
category is identified. The INPUT statement in line 320 takes each value
and stores it in the next (Qth) position of the array A. When the last
asset has been input, the total is computed (lines 120-130), and the user
is given a chance to verify that it is correct. 1If "YES'", the program
would begin to process the information, starting with line 500. If ''NO'",
then a repeat variable "R'" is set, and the questions are repcated. However,
in the repeat mode of this program, the value previously entered for ecach
asset is displayed on the screen. If the value is correct, striking the
"CR" key will retain that value and move to the next item. If a correction
is required, the user can supply the corrected value and press '"CR'".

2-33

In other words, the INPUT statement will leave the variable unaltered if
nothing is typed in at the keyboard to change it.

18 DIM A(S)

20 CLS:COLOR ©,3,7,7

25 Q=0

27 T=0

30 OUTPUT"EMTER ASSETS",1@,66,1
49 OUTPUT®IN $000", 10,60, 1

50 WINDOW 54

60 PRINT"HOME UALUE"

70 GOSUB 300

80 PRINT"AUTOS"

99 GOSUB 300

198 PRINT"STOCKS AND BONDS®

119 GOSUB 300

120 FOR J=1 TO 3

130 T=A(J)3+T:NEXT

148 PRINT:PRINT:PRINT"TOTAL";T
158 PRINT:PRINT"CORRECT?"

160 AS=INSTR$(1)

170 IF A$="Y" GOTO 500

188 IF A%$=“"N" GOTO 2008

199 GOTO 160

200 R=1

219 GOTO 20

2393 REM-INPUT AND STORE IN ARRAY
300 Q=Q+1

318 IF R=1 THEN PRINT"(WAS $*:ACQ);")"
328 INPUT ACQ)

330 PRINT:RETURN

5008 END

Entering string data with the INPUT statement is essentially the same operation
as entering numeric data, except that the data is stored in a string variable.
There is, however, a potential conflict. Since the comma (,) can be used

as a delimiter to allow entry of multiple values with a single INPUT statement,
a string that contains a comma, such as '"KENNEDY, JOHN'", must be flagged

as a string containing a comma, rather than two separate values. You do

this by entering the string in quotes in response to the INPUT prompt.

If the string data contains no commas, no quotes are required to enter it.
Consult the Reference Section for more details on INPUT data entry.

You can also load data into a program with a CLOAD*A statement, where A
represents a previously dimensioned array name. Your program should provide
a guide through loading and positioning the data tape prior to issuing the
CLOAD*A statement. The programs in Financial Library I illustrate how data
is passed from one program to another in this fashion. Also see the CLOAD
and POKE statements in the Reference Section for more information on passing
data from program to program.

One final note about arrays. Both the RUN command and CLEAR statement set
all numeric variables to zero and all string variables to null or empty.
Therefore, there's no need to initialize arrays to zero at the beginning
of a program. Save that RAM for other, more important, processing steps.

2-34

Pick a Number Between 1 and 100...

Chance is an element of many computer games—-the card hand that you draw

in Black Jack, whether or not you fumble on any given play in SUPERBOWL,

or the roll of the dice in Knockdown. To add this element of chance to

your own BASIC programs, you will need to become familiar with random number
generation. The RND function in the BASIC language provides the facility
for adding this chance factor to your games and displays.

What's a random number generator, anyway? You can think of it as a little
machine that sits in your computer and spits out a random number each time
it's called. The number it returns always has a value between 0.0 and
1.0. The likelihood that a returned number will be within a specified
interval (say, between .30 and .50) is proportional to the length of the
interval. That is, about 20% of the numbers returned would be within the
.30 - .50 interval. 1If you take the entire possible interval of 0.0 to
1.0, half the numbers returned will be less than .50, 25% of the numbers
will be less than .25 or greater than .75, 10% will be between .90 and
1.0. Of course, for these ratios to be true, large quantities of random
numbers must be '"drawn from a hat." To see a list of random numbers displayed
on your TV screen, RUN the following program:

18 FOR I=1 TC 8
280 PRINT RNDC(1)
380 NEXT

In using the random number generator, you can't predict what particular

value you'll draw next. You can only assign a probability or likelihood

that the number drawn will lie within a certain interval. To test the

random number generator, let's draw 1,000 random numbers and count how

many are larger than .50 and how many are smaller than .50. If the numbers
are uniformly distributed over the interval, then you should see approximately
500 numbers in each category. If you run the following program several

times, you'll see different counts, but all will hover about the 500 mark.

19 CLS

20 PRINT"RANDOM NUMBER"
30 PRINT“"GENERATOR AT
40 PRINT"WKORK..."

58 PRINT

50 FOR N=1 TO 1000

7@ R=RND(1)

80 IF R>.50 THEN H=H+l1
30 1IF R<.580 THEN L=L+1
188 NEXT

118 PRINT"ABOVE .5 =";H
128 PRINT"BELOW .5 =";L
138 PRINT

The more numbers you draw, the better the 50% rule will hold.

2-35

Now, let's consider a subroutine that will return a random number, R, that
has a value between 1 and 6, with equal probability of any number in that
range being drawn, as would be the case with the throw of a single die.

The subroutine will use the RND function and then apply an arithmetic expression

to spread the number in an interval of 0.0 to 6.999, then extract the integer
part of the number computed. This can be done with the single line

50 R = INT(6 * RND(1)) + 1:RETURN

You might put this subroutine in a program that simulates 8 throws of the
die, such as

18 CLS

386 FOR I=1 TO 8

40 GCSUB 50

42 PRINTR

45 NEXT

46 END

58 R=INT(B%RND(1))+1:RETURN

To draw a number between O and 3, change line 50 to read
50 R = INT(3 * RND(1)) + 1:RETURN

You have to add 1 to the random number returned in the statement above,

or the number 3 will rarely be returned. 1In drawing a random number in

the range 0.0 to 1.0, there is only a very small probability that the number
1.0 will be returned. Therefore, you must either add 1 to the random value
returned, or increase the range specified. You could also change line 50

to read

50 R = INT(4 * RND(1)):RETURN

to draw a number between 1 and 3. The likelihood that a value of 4.0 will
be returned is miniscule.

The argument (1) following the RND call simply tells the computer to draw
the '"next'" random number. Actually, any positive value can be used as the
argument in this call without affecting the sequence of random numbers that
will be returned.

How random are the random numbers? Well, actually the Interact has what's
called a "pseudo-random number generator'". The random values are computed,
and the number generator produces the same sequence from the time the computer
is turned on, each time it's turned on. You can, however, randomize the
generator starting point (or "seed") in the series by calling the RND function
with a negative argument to set the sced. While there are several ways

to initialize this seed randomly, the easiest way is to pass the negative
value of the computer's clock to the subroutine. To do this, use a statement
such as

30 J = RND(-PEEK(24559))

2-36

=

This statement sets the initial seed for random number generation to the
point in the number sequence that is equal to the value of the clock.

This value will be different cach time the program in executed. A statement
of this type should only be ecxecuted once at the beginning of your program,
and the returned variable, J, has no particular meaning outside the initial-
ization call, nor would it normally be used elsewhere in the program.

Want to draw a hand from a deck of cards? 1If you want to allow repeated
draws from the '"deck" during game play, set up an array in memory that

has 52 locations. The position of any element in the array is associated
with the suit and value of the card. The value in the array will be O

if the card has been drawn before. As more of the deck is played, you

note that the program runs more slowly. It has to perform the card selection
sequence in lines 100-120 numerous times to find a card that has not already
been drawn.

19 REM-DRAKN A CARD

20 CLS:COLOR 4,3.0,7

36 DIM C(52)

35 FOR I=1 TO 52:C(I r=1:NEXT

48 OUTrUT"HIT ANY KEY",10,66,1

58 OUTPUT"TO GET NEXT",10,68,1

60 OUTPUT"CARD...",18,54,1

78 WINDOW 48

80 A$=INSTR$(1):NC=NC+1

98 IFNC=53THEN PRINT"OUT OF CARDS":PRINT:EMD
18080 R=INT(RND(1)*%52)+1

119 IF C(R)=B GOTO 1809

1280 C(R)Y=0

130 S&="CLUBS"

149 IF R>13 AND R<27 THEN S$="SPADES”:GOTO 17O
156 IF R>26 AND R<40 THEN S$="DIAMONDS":GOTO 170
166 IF R>39 THEN S$="HEARTS"

1786 FOR I=1 TO 14

188 IF R<14 SOTO 200

198 R=R-13:NEXT

2080 U$=STR#(R)

218 IF R=1 THEN U$="ACE":GOTO 250

220 IF R=11 THEN U$="JACK":GOTO 250

230 IF R=12 THEN U$="QUEEN":GOTO 25@&

248 IF R=13 THEN U$#="KING"

250 PRINTU%; " “;S%

268 GOTO 809

2-37

To conclude our discussion of random number generation, let's look at a
classical problem in probability theory called the '"random walk'. Imagine
that a drunk has been placed in the exact center of a square field that

is bounded by bars on all sides. 1In the irrationality of his drunken stupor,
our drunk thinks that he needs yet another drink, so he attempts to make

his way out of the field and back to one of the bars. He does this by raking
random, stumbling steps in each of the four directions. That is, on any
given step, he is just as likely to walk forward as backward, to the right

as to the left. The question is, if the size of the field is known in number
of steps, what's the average number of steps it will take for the drunk

to reach one of the bars?

We can solve this problem by simulating the walk on the Interact and displaying
the number of steps the drunk takes each time we run the program. In this
example, we've placed the drunk in the middle of a 40x40 square field.

The listing of the program that simulates this walk is given below. It
illustrates not only the use of random numbers, but also the POINT and ON...GOSUB
elements of the BASIC language.

18 REM-RANDOM WALK

20 CLS:COLOR B8,7,4,3

30 PLOT 20,20.1.40,40

40 C=0:X=40:Y=40

50 GOSUB 90

60 GOSUB 150

70 GOTO 53

80 REM-PLOTS POINT

99 IF POINT(X,Y)=@ GOTO 1108
188 PLOT X,Y,2:PLOTX,Y,3:C=C+1:RETURN
119 OUTPUT C,78,50,3

120 OUTPUT"STEPS",70,44,3

138 FOR Q=1 TO 999:NEXT:TONE 5@, 50:RUN
140 REM-TAKE A STEP

150 R=INT(4%RND(1))+1

168 ON R GOSUB 18@,190,200,210
1780 RETURN

189 X=X+1:RETURN

199 X=X-1:RETURN

208 Y=Y+1:RETURN

218 Y=Y-1:RETURN

As an exercise, try adding lines of code that will execute this program
repeatedly and store the number of steps taken on each execution in a running,
moving average.

See the RND function in the Reference Section for more information on random

number generation. There are also numerous other examples in this manual
that use the RND function to generate random values for a variety of purposes.

2-38

GRAPHICALLY SPEAKING

The old adage "A picture is worth a thousand words'" rings particularly
true for the Interact. Despite its screen resolution, your Interact is
capable of producing graphic displays that are visually dazzling. You'll
find that graphics add another dimension to your BASIC programs, making
them amusing and entertaining to execute. Virtually all the effects in
the various game programs can be adapted for use in your own programs and
games written in BASIC. While some effects are naturally more difficult
to implement than others, you'll find that the graphics capabilities of
your Interact provide one of the best ways to sharpen your programming
and artistic skills. Effective use of the graphics display makes any program
you write more interesting. Let's take a look at the features available
and how you can use them.

The Screen

As we previously discussed, your TV screen can be addressed as a matrix

of picture cells ("pixels"). Your TV screen, whether it is a 13-inch or
4—foot large screen, has 77 rows and 112 columns. Each point on the screen
can be addressed as an (x,y) coordinate pair of this matrix, where x varies
from 1 to 112 and y varies from 1 to 77.

f. (1,77) (112,77)j
T- (x,y)
|

- (1,1) (112,1).}

The origin of the screen is at the lower left corner, and can be thought

of as location (0,0), although that point can't be seen on most TV screens.
The scanning, or placement, of the matrix on the screen can vary from TV

to TV. Therefore, we recommend that you avoid putting graphic images or
text too close to the screen edges. Images too close to any edge can appear
to be '"chopped off' on some TV screens.

Each pixel always displays a single color. The pixels are approximately
square, but they are slightly taller than they are wide. Pixel colors
are controlled by the color set chosen with the current setting of the
COLOR command and references to the color set from various PLOT, OUTPUT,
and some POKE commands.

Screen Colors

We also know from our previous discussions, that eight colors are available
for graphic display. Only four colors can be in use on the screen at any

3-1

one time. You define the color set you want to use with the four positions
on the COLOR command. See the Screen Control section of the previous chapter
for a list of the available colors and more definition of the color set.

The statement

COLOR 0,7,1,4

defines a color set in which black is the background color, and red, white,
and blue are the colors that can be used for display against the black background.
This color set might be used for drawing the American Flag, for example.

The COLOR statement changes the color set and therefore the colors associated
with any pattern or message that is on the screen at the time the COLOR
statement is executed. While this can be used to hecighten the visual impact
of a display with blinking, flashing, or color rolls, it's not always the
most visually effective. For that reason, you frequently clear the screen
with the CLS statement before changing the color set.

To use colors effectively in a program, you should first make certain the
color controls on your TV set are accurately set. You can use the Color

Test on the 16K Diagnostic Tape to adjust the colors, or, better yet, use

this simple BASIC program. It displays four bands of color on the screen:
blue, red, green, yellow (from top to bottom). This program uses Microsoft

8K BASIC extended PLOT parameters to draw the color bands quickly. If you
have only Level TI BASIC, you can adapt this program by putting the statements
in lines 40, 60, and 80 into FOR...NEXT loops to draw the color bands.

1@ REM-TU CCLOR ADJUST PROGRAM
28 CLS:COLOR 4,1,2,3

3@ OUTIUT"ELUE", 19,60, 3

49 PLOT 1,35,1,112,18

5@ OUTPUT"RED", 1@,45,3

50 PLOT 1,18,2,112,18

7@ CUTPUT"GREEN", 18,27,3

5@ PLOT 1,1,3,112,18

39 OUTPUT“YELLOW®, 19, 14,0

100 AS=INSTRS(1)

When the COLOR statement is executed, a potentially unfortunate side effect
occurs——-the tape motor is always turned off. While this won't affect most
of your programming, it may be limiting when you wish to run a program with
COLOR changes that also keeps the tape motor on to permit a music tape to

be played through the TV speaker. Technically, this happens because a color
register and a tape motor control bit share the same byte in memory. You
can, however, control the color and tape motor simultaneously by using POKE
commands to set the color registers with the desired color and tape motor
control information.

Let's assume that we set the four COLOR parameters (CO, Cl, C2, C3) as
in the previous program and define a variable, M, that is set to a value
of 1 if the tape motor is to be turned on, O if it is to be turned off.
The following subroutine will set the colors and tape motor control as
desired:

180 T1=64%M+3*%C2+CO
1189 T2=8%C2+C1l

1286 POKE 4B96,T1
1380 POKE £144,T2
148 RETURN

This subroutine combines the variables in two arithmetic expressions and
stores the results in two variables, Tl and T2. Those values are then
stored in the two color register locations at 4096 and 6144 with the POKE
statements.

Using this subroutine in a program with the tape motor turned on (M=1)

is straightforward. If you execute the following program, you'll see

the word HELLO continuously change color on the screen with the tape motor
turned on. You can put in a music cassette during execution of this program
and play music through the TV speaker.

5 POKE 138215,25

18 CLS:M=1

20 CB=0B:Cl1=1:C2=3:C3=7
38 GOSUB 100

4@ OUTPUT "HELLO“, 40,508,1
58 fOR Cl1=1 TO 7

68 GOSUB 100

78 FOR G=1 TO 500:NEXT
80 NEXT

893 GOTO 509

1808 T1=64*%M+3%C2+C0O
110 TZ2=8%C3+Cl

120 POKE 4896,T1

130 POKE 6144,T2

148 RETURN

Good Color Combinations

The choice of the colors you use in your program is, of course, strictly

up to you. However, there are some combinations of colors which are much
better than others. Some of our recommendations for color selection are

as follows:

1) Black backgrounds (C0=0) are very effective and allow maximum
flexibility in the choice of the foreground colors. 1In addition,
black produces less ''static noise'" on some TV screens than other
colors. It also reduces the visibility of '"herringbone'" or '"clock
lines" that may appear on the screen if your Interact needs some
timing adjustments.

3-3

2) Avoid red lettering on blue backgrounds or vice-verse. Red and
blue adjacent pixels tend to bleed into each other, making the
result difficult to read. This is also true of red/green combinations.

3) Black or white lettering on any background color is effective.

When developing your graphics programs, experiment with different color
combinations. To get a feel for the color combination effects with your
TV and Interact, enter and RUN the following Microsoft 8K BASIC program.

18 CLS:COLOR @9,1,3,7

20 PLOT 20,20,1,909,30

30 PLOT 4@,30,2,50,12

40 PLOT 1,62.3,112,13

5@ OUTPUT"HELLO",5@,68,1
68 OUTPUT"MICRO",5@,52,2
70 OUTPUT"VIDEO",5@,32,3
80 WINDOW 18

When you see the "OK" prompt, enter some different COLOR commands in direct
mode to see the effect of different combinations of lettering on various

colored backgrounds. Some examples you might try are:
COLOR 7,3,4,2
COLOR 5,6,0,7
COLOR 1,2,4,6

b b b

Learn to choose effective color combinations--that's an important part of
using your Interact's graphics capabilities! A poor color combination can
destroy the visual effect of even the most spectacular graphic.

Split Screen Techniques

The WINDOW command can be used to divide the screen into an upper and lower
portion, as shown in the previous example. The dividing line can bé moved

up or down by changing the value supplied with the WINDOW command. All
scrolling from PRINT commands in a program takes place only on the lower
portion of the screen. Thus, two scquences of seemingly independent visual
activity can take place on the same screen quite easily. With a split screen
effect, the lower portion of the screen usually contains textual material,
while the upper part is generally graphic. RUN the following example to

see a "READY, AIM, FIRE" sequence that's quite effective.

3-4

18 CLS:COLOR @,1,7,3

23 W=18

39 WINDOW W

40 PLOT 1,25,1,112,1

58 SOUND 2,522

E8 PRINT™ READY *

70 FOR X=1 TO 58 STEP 2

80 IF X=27 THEN PRINT" AIM*

98 OUTPUT"<>",X,40,2

168 OUTPUT"%™,X+3,48,1:0UTPUT"<>",X,40,0
1180 OUTPUT"*",X+3,40,0: NEXT

1280 OUTPUT**",X+3,40,1:0UTPUT"<(>",X,40,2
138 SOUND 1,255

1486 PRINT" FIRE!"

158 FOR N=41 TO 77

168 PLOT 56,N,2:PLOT 56,N,0

178 NEXT

188 GOTO ik

This program illustrates several ideas in graphic display, but let's take
a closer look at the concept of "windowing' a message in the lower portion
of the screen. You can create a different effect in the program above

by raising the window. Change line 20 to read

20 W = 30

and RUN the program again to sce the difference in effect. For another
variation, decrease the WINDOW setting by six pixels every time a PRINT
statement is performed. This has the effect of graphically '"adding-on"
subpoints to the upper part of the screen display.

Want to use a two-color split screen display? Simply PLOT the upper part
of the screen in color 1, 2, or 3. The bottom part of the screen remains
in the background color defined by the color O position in the color set.
Try this example:

18 CLS:COLOR 7.6.0, 1

20 WINDOW 36

39 PLOT 1,37.1,112,40

49 OUTPUT*SPLIT SCREEN",22,60,2
58 J=J+1

6@ PRINT TAB(7);J

78 GOTO 5@

A horizontal stripe just above the window boundary adds even more graphic
appeal to either the single or two-color split screen. Add this line to
the example above to see the additional graphic effect.

35 pLOT 1,37,3,112,1

To use scrolling with windowing in effect, we recommend that the WINDOW
value be an even multiple of 6 (e.g., WINDOW 18, WINDOW 36, etc.), so the
tops of letters are not '"chopped off'" during the scrolling process. Restore
full screen scrolling by typing a WINDOW 77 command or the RESET button

for a RESET-R program restart.

3-5

For a more elaborate example of scrolling messages that includes a timepiece
with rotating hour, minute, and second hands in a split-screen display,
see the MY GRANDFATHER'S CLOCK program.

Simple Point Plotting

The PLOT command can be used to draw individual points and lines on the

screen.
achieved.
set of commands:

WINDOW 24
CLS
COLOR 0,1,3,4

Try each of the following examples in direct mode to see the results
Set your computer for this exercise by entering the following

TO DRAW

A single point

Horizontal line
Dotted horizontal line
Vertical line
Dotted vertical line

o) . .
457 upward sloping line

Double horizontal stripe

Horizontal line
(right to left)

Filled box (slow speed)

ENTER THIS COMMAND

PLOT 50, 50,2

FOR X = 1 TO 112:PLOT X,60,1:NEXT

FOR X = 1 TO 112 STEP 2:PLOT X,55,2:NEXT

FOR Y = 40 TO 70:PLOT 10,Y,3:NEXT

FOR Y = 30 TO 60 STEP 2:PLOT 15,Y,2:NEXT

FOR Y = 30 TO 60:PLOT Y,Y,1:NEXT

FOR X = 1 TO 112:PLOT X,64,1:PLOT X,65,2: NEXT

FOR X = 80 TO 20 STEP -1:PLOT X,65,2:NEXT

FOR X=30 TO 80:FOR Y=50 TO 57:PLOT X,Y,2:NEXT:NEXT

More complicated figures can be drawn by applying geometric equations within

the program.

For example, the following program draws three concentric

circles in three different colors, centered at (50,50) with radii of 25,
The variable T is incremented between O and 2fY (approx.

20, and 15 pixels.
6.28). T represent

19
209
30
40
50
60
7Q
80

s the angle in radians.

CLS:COLCOR 7,1.2,4
FOR R=25 TO 15 STEP -5
C=C+1

FOR T=8 7O 6.28 STEP .85
PLOT 58+R*COS(T),58+R*SIN(T),C

¥1=10%SIN(X)
NEXT:NEXT
AS=INSTR®%(1)

3-6

Multi-point Plotting

The PLOT command in Microsoft 8K Fast Graphics BASIC has been extended
to allow two optional parameters for graphics up to 30 times faster than
are available in Level II BASIC. These paramecters allow you to specify
the horizontal and vertical lengths of a plot, in addition to the origin
and color:

COLOR x,y,c,xlen,ylen

The first three parameters of the PLOT command are the same as in Level

IT1 BASIC. The first two specify the (x,y) coordinate pair that is the
origin of the plotted area. The third is the color from the color set,
specified by position in the set (0-3). xlen specifies the horizontal
length of the plot, and ylen specifies the vertical length. The (x,y)
coordinates in the extended PLOT statement determine the placement of the
lower left corner of the plotted area. Both xlen and ylen must be greater
than 0, and x+xlen must be less than or equal to 113 and y+ylen must be
less than or equal to 78. 1If either xlen or ylen has a value of 1, a line
one pixel wide is drawn on the screen.

Thus, a horizontal or vertical line or a rectangle of any size, position,

and color may be drawn with a single PLOT command. The FOR...NEXT loops

used to draw lines or fill in areas in Level II BASIC can be eliminated

from programs written with Microsoft 8K BASIC, so programming is simpler,

and programs require less RAM for the same operations. An additional benefit
is that the speed of the graphics can be up to 30 times faster than the

older Level I1 plot methods, because BASIC uses the system ROM routine

RFILL to perform the graphics display. While this ROM routine can be invoked
through POKE statements and a USR call (sce the Micro Video MONITOR and

the Guide to ROM Subroutines), it's far more straightforward to use the
extended PLOT command in 8K BASIC.

For example, to clear the screen in direct mode, use this PLOT statement:

PLOT 1,1,1,112,77

See for yourself how much faster the graphics are in 8K BASIC by entering
the following commands:

TO DRAW ENTER THIS COMMAND

Horizontal line PLOT 1,60,1,112,1

Vertical line PLOT 40,50,2,1,20

Wider horizontal PLOT 1,60,3,112,3
line

Rectangle PLOT 20,20,2,80,50

Game Grids

A game grid is nothing more than a set of equally-spaced horizontal and
vertical lines. These can easily and quickly be established on the screen
with Microsoft 8K BASIC as illustrated in the following simple program.

19 REM-GEME GRID

20 CLS:COLOR 0,7,1,3

30 FOR X=18 TO 70 STEP 10
49 PLOT X,108,1,1,60:NEXT
50 FOR Y=18 TO 78 STEP 10
60 PLOT 1@,Y,1,61,1:NEXT
70 A$=INSTRS(1)

This grid could also be developed in Level IT1 BASIC using FOR...NEXT statements,
but the display would be markedly slower.

Checker Board

A checker board is a set of alternating color squares. In the next example,
a single PLOT statement fills each square in the appropriate color. The
subroutine in line 40 alternates the color variable, C, between values of

1 and 2 to change the colors in the squares. The second GOSUB 140 in line
110 causes a skip of the color sequence each time a new column of squares

is started, so that the square colors alternate horizontally as well as
vertically.

18 REM:CHECKER BOARD

2@ CLS:COLOR @,1,7,3)
30 GOSUB €0

46 AS=INSTRS(1)

5@ REM-CHECKER BOARD ROUTINE

60 FOR X=20 TO 82 STEP 8

70 FOR Y=6 TO E8 STEP 8

80 GOSUB 140

99 PLOT X,Y.C,8,8 .
100 NEXT

110 GOSUB 140

120 NEXT -
1380 RETURN

148 C=C+1:IF C=3 THEN C=1

150 RETURN

Graphic Design

You might want to add graphic images to your programs that are appropriate

to a particular season or occasion. An American flag would fit well into

an Independence Day display. You might want to use your Interact as a '"birth-
day card" display at a birthday party and develop images of a birthday cake
and flickering candles. Or, at a Christmas party, you might want to include
the following code in a display program. This small program draws a Christmas
tree on the screen by defining a set of horizontal rectangles that narrow . |
as they approach the top of the tree (using Microsoft 8K BASIC).

3-8

19 REM-CHRISTMAS TREE

20 CLS:COLOR @0.2.1,3

30 »4=26:XL=60

49 FOR Y=12 TO €5 STEP Z
50 PLOT X.Y,1,XL,2

50 X=X+1

70 XL=XL-2

80 NEXT

99 FOR Q=1 TO 1000:NEXT
198 GOTO 1@

As an exercise, add some PLOT or OUTPUT statements to draw a trunk, decorate
the tree, and place packages bencath it.

Note that you could draw the Christmas tree above in Level 11 BASIC. However,
the logic to do so would be more complex because a FOR...NEXT loop is required
to draw each rectangle, rather than a single PLOT statement. The graphic
development on the screen would also be significantly slower, as you'll

see if you enter and RUN the version of this program below.

S CLS:COLOR ©,1.2,3
19 A = 18:B = 15
20 C = 39:D = 80
3 FOR L =1 TO0 9
49 FOR ¥ = A TO B
59 FOR X = C TO D
60 PLOT X,Y,2

70 NEXT X:NEXT Y
880 A= A+6: B=B+6
99 C = C+3:D = D-3
1080 NEXT L

See the differences in speed and visual effect?

Extra-Large Lettering

If you think the character size on your Interact is too small, here's a

way to increase the size of the letters! Seriously, extra-large lettering
can be a useful mechanism to attract viewer attention to your display program.
If you enter and RUN the following short program, your Interact will give

you a bold greeting.

19 REM-LARGE LETTERING
20 CLS:COLOR ©,2,1,3

30 X=20:Y=20

40 PLOT X,Y,2,8,50

50 PLOT X,Y+22,2,30,8
60 PLOT %+39,%v,2,8,50
70 PLOT X+55.v,2,8,50
80 FOR Q=1 TO 1800:NEXT

3-9

You'll find it useful to set all (x,y) coordinates as variables rather than
constants, so that the complete word can be properly positiosned on the

screen with minimal retyping effort. Obviously, only short words will fit

on the screen if you use large lettering. However, you can size the lettering
as required to fit in many cases.

"Three—-dimensional" lettering can also be effective in combination with

large letters. We can easily adapt our large lettering program to illustrate
this concept. For a three-dimensional effect on any graphic image, draw

the image three times, in three different colors. Plot the second copy

of the image one pixel up and one pixel to the right of the original image.
Then, plot the third one up and one over from the second. 1In our program,
we'll accomplish this by putting the PLOT statements that produce the lettering
in a FOR...NEXT loop that will draw the image three times, each time in

a different color from the color set (C). At the end of each loop, we'll
increment the values of X and Y by one.

28 CLS:COLOR 0.7.4,1
30 X = ZB:Y=20

35 FOR C =1 TO 3

44 PLOT X,Y,C,8,50

5@ PLOT X.Y+22,C,30,8
68 PLOT X+30,Y.C,8,50
78 PLOT X+55,Y,C,8,50
75 X = X+1:¥ = YV+1

77 NEXTC

89 FOR Q = 1 TO 1060:NEXT
98 CLS5:GOTO 3@

Bar Graphs

A bar graph is the most effective way of displaying trends in a series of

data points with the Interact. With Microsoft 8K BASIC, each bar can be
produced by a single PLOT command with appropriate scaling and axis positioning.
Excellent examples of bar plotting can be found in the BASIC Examples Booklet
and in the Trends program in Financial Library II. Color changes in the

bars can be used to signify negative values or to differentiate actual from
forecasted data.

Character Patterns

The OUTPUT statement lets you display any character, string, or value at

any position on the screen, in one of the colors specified in the color

set. The (x,y) position specified is the position of the pixel in the upper
left corner of the character. Your computer displays each character as

a 5x5 pixel grid within a 6x6 pixel field. Since characters can be positioned
so as to overlap their neighbors with OUTPUT statements, interesting displays
can be created by choosing appropriate colors, positioning, and characters.
For example, try the following program. It uses the OUTPUT statement to

3-10

overlap the characters "C'" and ";" to produce a colorful pattern on your
TV screen.

18 REM-CHARACTER PATTERNS

39 CLS:COLOR 7,1,3,2

35 FOR X=i TO 112 STEP 5

49 FOR Y=6 TO 77 STEP S

5@ OUTPUT"C",X,Y,3%RND(1)+1

55 OUTPUT"; ", X+1,Y+1,3%RND(1)+1
60 NEXT:NEXT

70 GOTO 35

Try experimenting with the effects you can achieve by varying the characters
used in the OUTPUT statement and the colors in the color set.

Interact Slang —— Non-Standard Characters

Your Interact has a number of non-standard or 'slang' characters in its
character table. Your Interact understands these characters in that it
knows that they exist, but you can do little with then except use them
for display in your programs. These patterns are different depending on
which BASIC you have, but all the BASICs have them, and you can turn them
into controllable entities within game programs. You access these characters
by indexing beyond the limits of the standard ASCII character table your
Interact uses for communication. The following sample program will let
you look at the non-standard characters. You might want to keep a piece
of paper handy and make note of your favorites as the program runs, for
use in future prdégrams.

19 REM NON-ASCII SPECIAL CHARACTERS
20 CLS:COLOR 4,8,7,3

25 WINDOW 18

30 PRINT CHR$(8)

35 FOR C=1 TO 255

36 PRINT"CODE=";C

40 FOR X=10 TO 108 STEP 2
5@ OUTPUT CHRS$(C),X,50,2
60 OUTPUT CHR$(C),X,50,0
70 NEXT:NEXT

80 WINDOW 77

5x5 Pixel Blocks

If you do not have Microsoft 8K BASIC, you can use the CHR$(1) function
to color-fill an area with a 5x5 pixel block, instead of using the PLOT

3-11

statement. You'll find that it provides a faster graphics capability, although
not nearly as fast as is possible with 8K BASIC. You can OUTPUT CHR$(1)
within a FOR...NEXT loop to draw 5 pixel wide lines for developing images.

As this character is outside the normal ASCII character set, we first have

to ensure that the pointer to access the character table is properly positioned.
We do this by printing the backspace character (CHR$(8)), as shown in line

12 of the following example. This example shows how the OUTPUT CHR$(1)

can be used to draw the set of alternating red and white stripes in the

American flag.

18 REM-5 PIXEL STRIPES
12 PRINTCHRS(8)

20 CLS:COLOR @,1,7,1

25 FOR Y=10 TO 78 STEP S
3@ C=C+1

49 IF C=3 THEN C=1

5@ FOR %X=5 TO 118 STEP S
68 OUTPUT CHR$(1),%,Y,C
70 MEXT:MNEXT

108 RUN

Of course, the extended PLOT statement in Microsoft 8K BASIC is still much
faster and offers more flexibility than this method, but CHR$(1) offers
significant improvement over single point plotting for those still using
the old Level II BASIC interpreter.

Creative Motion —— Stick Figures

Stick figures can be made to move around on the screen to provide an entertaining
visual in your program. You can make these figures act independently or

in groups. Stick figures are created by drawing a set of characters with

OUTPUT statements at a specified location on the screen from a subroutine

in the program. After a stick figure is output, it is typically redrawn

in the background color to '"erase'" it before returning to the calling program.
The program then issues another call to the subroutine to output the set

of characters again. This makes the stick figure appear to "walk' across

the screen. In the following example, the stick figure is crcated by combining
the set of OUTPUT characters in lines 110 through 140.

. 18 REM-STICK FIGURES
Prews e 2@ CLS:COLOR 6,0,2,7
25 Y=50
28 FOR %X=1TO112:PLOT X,41,2:NEXT
39 FOR X=1@ TO 108 STEP 2
49 GOSUB 180
5@ NEXT
60 GOTO 20
98 REM-DRAW AND ERASE FIGURE AT (X,Y)
~1P0@ FOR C=1 TO @ STEP -1
(iln OUTPUT"B" ,X,Y+5,C
. 128 OUTPUT">",X+1,Y,C
1125 OUTPUT"<",X-1,Y,C
'13@ OUTPUT"/",X-2,Y-4,C
140 OUTPUT CHR$(92),%X+2,Y-4,C
208 NEXT C
3080 RETURN

Detasa s

Word Smears

You can achieve the visual effect of "spraying'" a word on the screen to
attract attention in your programs. The following example shows how this
can be done. You can control the direction and amount of the smearing

by the parameters in the FOR...NEXT loops. You can also add tones to the
visual to increase its impact.

18 REM-WORD SMEARS

28 CLS:COLOR ©,1,7,3

38 FOR Y=18 TO 58 STEP 2
35 TONE 108-Y, 19

48 OUTPUT"WHEE",20,Y,1
58 NEXT

68 OUTPUT "WHEE"®,58,Y-1,2
78 FOR Q=1 TO 588:NEXT
18686 RUM

3-D Lettering

We've already considered the concept of three-dimensional lettering with
extra-large characters. You can also apply this idea to normal-sized lettering
by repeated OUTPUT statements in different colors and increased horizontal

and vertical displacement of the message. The choice of colors in three-
dimensional lettering is important. The last color used to display the

message should have the greatest contrast with the background color for

the best effect.

18 REM- 3D LETTERING

28 CLS:COLOR ©,4,6,7

25 S$="BON JOUR"

38 OUTPUT S%,34,50,1

49 OUTPUT S%.35,51,2

56 CUTPUT S$%, 36,52,3

668 GOSUB 100

78 GOTO 29

1868 FOR Q=1 TO 300:NEXT
1180 RETURN

Graphic Color Control

You can achieve a number of different graphic effects just by manipulating

the colors in the current color set, such as blinking, flashing, color rolls,
shimmering, and instantaneous writing. We'll take a look at these visual
effects to show you how they can increase the drama and impact of your program

display.

Blinking Objects

You can make a word or object "blink'" on and off by changing the color in
which it is displayed to the background color. You can use timing loops

to control the speed of the blinking--the relative '"visible'" and '"invisible"
portions of the blinking cycle.

1@ REM-BLINKING
20 CLS:COLCR 3.7.0.1

3@ OUTPUT"SAVE",51,60, 1

1@ FOR X=51 TO 73:PLOT X,54,1:NEXT
50 GOSUB 100

68 CCLOR 3,3,0,1

70 GOSUB 100

80 COLOR 3,7,0,1

99 GOTU 5@

198 FOR Q=1 TO 108:NEXT:RETURN

To make the word blink faster or slower in the preceding program, raise
or lower the highest value of Q in the FOR...NEXT pause loop (line 100).

Flashing the Screen

You can produce the effect of a screen flashby switching the values in the
color set of the background color and the color in which an object or word
is displayed. Very dramatic effects can be achieved with high contrast
colors such as black and white and large objects such as oversized letters.
You control the speed and duration of the flashing by the corresponding
FOR...NEXT pause loops.

180 REM-FLASHING

20 CLS:COLCR @,7,1,3

25 OUTPUT“TODAY",46,30@,2

38 OUTPUT"SAVE",51,60,1

49 FOR X=51 TO 73:PLOT ¥,54,1:NEXT
50 GOSUB 108

50 COLOR 7.0.1.3

70 GOSUB 100

99 COLOR ©0,7,1,3

99 GOTO 50

198 FCR Q=1 TO 5@:NEXT:RETURN

Color Rolls

You can produce a color roll in your programs by rotating the colors associated
with a displayed object or message through the available eight colors.

We've done a color roll in the following program by changing the color

in the second position of the color set (color 1) within a FOR...NEXT loop.
Each time through the loop, the value of the variable, T, is incremented

by one to change the color setting of color postion 1.

18 REM-COLCR ROLLS

20 CLS:COLOR ©,7,1,4

38 FOR X=42 TO 82

32 FOR Y=3&8 TO 40

33 PLOT X,¥, 1:NEXT:NEXT

48 OUTPUT"ROLL ON",42,48,2
58 FOR T=¢ TO 7

686 COLOR G,T.,1,4

70 FOR Q=1 TO 100%T+50:NEXT
80 NEXT

99 GOTO 20

Shimmering

In the example on page 3-10, we showed you how to create three-dimensional,
oversized letters within your programs. You can add another effect to

make the large letter display even more powerful--making the word HI shimmer.
In the following program, we've created this shimmering effect by inserting
a FOR...NEXT loop betwecen lines 80 and 90 that rapidly switches the colors

in which the background dimensions are displayed. Type in this program

and run it to see the amazing effect—-the main HI lettering also appears

to vibrate!

19 REM SHIMMERING
20 CLS:COLOR @.7,4,1
30 X = 20:Y = 20

N
35 FOR C =1 TO 3 ({ ;7 Mo
48 PLOT X,v,C.8,58 (<—_ [[[]
58 PLOT X ’ Y+22 ’ € ’ 30 4 8 {i I\'M-MZ J{

68 PLOT X+39,Y.C,8,50 |
70 PLOT X+55,Y,C,8,50 /
75 X = X+1:Y = Y+1

L

77 NEXT C ol
80 FOR Q = 1 TO 180@:NEXT -~ us <
85 FOR I = 1 TO 25 /)
87 COLOR @,4.7.1 ((Jefas cofom
88 COLOR ©,7,4,1 e e

Y Y 2,
89 NEXT I

99 CLS:GOTO 30

3-15

Instantaneous Writing

We'll discuss one other effect that can be obtained through manipulating
the color set. We call it "instantaneous writing,'" because the words seem
to pop onto the screen from the background color. You can use this type
of effect for displaying messages in an interesting fashion or for making
objects suddenly appear on the screen.

You achieve the effect of instantaneous writing by initially setting all
colors in the color set to the background color, then drawing the visuals
referencing the three foreground colors (colors 1, 2, and 3 in the color
set). When the code establishing the visuals is done, just change the COLOR
statement to place the parts of the image or message in the desired colors.
The image will "pop'" onto the screen instantly. Keep in mind when using
this technique that the more complex the image is to develop, the longer

the time the screen will remain the background color.

18 REM-INSTANTANEOUS DISPLAY

20 CLS:COLOR 09,0,0,0

39 OUTPUT"GOOD MORNING,",20, 60,1
49 OUTPUT"MR. PHELPS...",20,54,1
58 OUTPUT®YOUR MISSION, ", 20, 40,2
60 OUTPUT"SHQULD YOU",208,34,2
78 OUTPUT"DECIDE T0",20,28,2

80 OUTPUT"ACCEPT IT...*,20,22,2
99 COLOR ©9,3,7,1

198 FOR Q=1 TO 5008:NEXT

118 GOTO 10

Advanced Graphics —- POKEing the Screen

The graphic display on the Interact is memory-mapped beginning at RAM location
16384 and occupies the next 2,463 bytes of contiguous RAM (ending at location
189431). Each full line on the screen actually contains 128 pixels, although
only 112 of them are displayed on the TV screen. Each byte addresses four
pixels, so each full line on the screen consumes 32 bytes of memory (128/4).
(The last 16 pixels (4 bytes) of each line are "invisible.") The leftmost
four pixels in the top row on the screen are controlled by the value of

memory location 16384. Therefore, the pixels on the screen are controlled

by the memory locations as follows:

16384 — 16415 First row of 128 (112 visible) pixels (32 bytes)
16416 - 16447 Second row of pixels

16448 — 16479 Third row of pixels

18912 - 18943 Seventy-seventh row of pixels

3-16

If you are using Level II BASIC, before you can draw on the screen with
the POKE statement, you must enable the POKE command with the statement

POKE 19215,25

If you are using Microsoft 8K BASIC, you do not have to enter this statement
because the POKE statement is automatically enabled when BASIC loads.

To use the POKE command to control colors on the screen, you specify two
values on the statement, separated by a comma. The first value, which

we'll call A, defines the memory location that controls the group of four
pixels you want to address. The second value, which we'll call B, is a

data value from O to 255, which is interpreted as a bit pattern to determine
the color of each pixel in the group. These four, two-bit bit patterns

call the colors in the color set as follows:

00 — color O (background color)
01 - color 1
10 - color 2

11 color 3

The pixels controlled by the two-bit bit patterns in each byte are addressed
in reverse order:

B = 781O = 01 00 11 10 bit patterns

2 3 0 1 pixel colors

In other words, the first two-bit bit pattern in the byte determines the
color of the fourth pixel controlled by that byte. The second bit pattern
determines the color of the third pixel, the third bit pattern the color
of the second pixel, and the last bit pattern the color of the first pixel.

To display a string of four pixels in a single color, use the data values
from the following table:

B= Color
0 0
85 1
170 2
255 3

To display pixels of different colors within a single byte, you will have
to convert the binary representation of the colors into a data value.

Enter the following commands in direct mode:
COLOR 0,1,2,3

3-17

POKE 17580,170

This command outputs a string of four green pixels in the center of the
screen. Now type

POKE 17581,236

and you'll see another string of four pixels, alternating yellow and red,
on the right end of the green bar from the previous POKE command.

The following simple program illustrates how POKE commands can control the
screen display from within a program. By poking the memory locations of

the screen with various values, you can display different color patterns.

Our program below produces colorful vertical striping across the entire
screen. You can POKE other values to the screen to display variable patterns.
While this technique is not particularly useful for animation, it can provide
an interesting graphic display.

180 REM-SCREEN POKES

20 CL.S:COLCOR B8,7,3,1

30 POKE 19215,25

49 FOR L=16384 TO 18624 STEP 32
58 FOR X=1 TO 32

680 POKE L+X,X

70 MNEXT:NEXT

20 AS=INSTR®#(1)

A couple of final notes about POKE and screen control:

1) When CLS is used to clear the screen, all bits are reset to the background
color.

2) Remember to save any program that contains POKE statements on tape before
running the program, as it is perfectly possible to POKE your program
right out of existence and lose all your work. To avoid this frustrating
experience, make a habit of CSAVEing your programs during program
development.

For further information and examples on fast graphics, refer to the image
development of the moving airplane and other visuals employed in the BOMBS
AWAY! Programming Tutorial. The program combines BASIC and machine language
programming and is suitable for study and exploration of yet another facet
of graphics development.

The Vector Graphics Subroutines package provides the BASIC user with callable
subroutines for very fast vector and triangle plotting. The package is

useful for programs that use spokes, windshield wiper wipes, triangles,

large, filled circles, rotating clock hands (as in the '"MY GRANDFATHER'S

CLOCK'" BASIC program). Consult the Micro Video Product Catalog for information
on pricing and how to order these items.

3-18

Graphic Guidelines

For effective visual presentations, we recommend the following guidelines:

1) Choose color combinations carefully. They should be attractive, readable,
and related to the program's graphics.

2) Avoid tedious visual development. Use routines or techniques which
captivate the viewers' imaginations.

3) Add surprise to your graphic image development wherever possible--
by unexpected endings, tones and sounds, or varying speeds.

The January 1981 issue of Creative Computing features an article on the
"CROWD STOPPER'" which contains many more suggestions for improving graphic
screen development.

STRUNG OUT

(String Handling)

In BASIC terms, a string is a list of alphanumeric characters. JOHN JONES,
YOU WIN, AND WOW! are all strings. You can use strings in BASIC as either
string constants or string variables. However, you must have a way to

tell BASIC that you are working with string information rather than numeric
values. You do this by adding a dollar sign ($) at the end of a variable
name or by enclosing a string constant in quotation marks.

STRING VARTABLES STRING CONSTANTS

S$ "YOU WIN"
NM$ (4) "NEW YORK, NY"
M$(3,1) "$324.45"

A string can vary in length from zero characters (we call these '"null"
strings) to a maximum of 255 characters. A string may contain alphabetic
and numeric characters, punctuation marks, special characters, and blanks.

When you RUN a program, all strings are initialized as null strings.

As strings contain a different type of information from numeric variables,
there is a different set of functions and operators for working with them.

The LEFT$, MID$, and RIGHT$ functions isolate a specified number of characters
from the left, middle, and right of a designated string and place the result
in a new string. There are no analogous functions for working with numeric
variables.

You'll notice that functions which return a string value always have a

"$" at the end of their names—-~INSTR$, STR$, INSTR$, and CHR$. Each of
the string handling functions is documented fully, along with examples

of their usage, in the Reference Section.

The "+" operator also takes on a different meaning when you use it to work
with strings. It becomes a concatenation operator that says: 'Tack the
second string onto the end of the first string." Let's e¢xamine how a few
of these string functions and operators work. For the time being, we'll
work in direct mode so that we can see the returned results quickly.

We'll start by initializing two strings with the following assignment state-
ments:

F$ =E "MADAME""
L$ = "BOVARY"

Now, let's verify that the strings were stored correctly by displaying
them.

MADAME

BOVARY

Next, we'll look at how we can manipulate these strings with the LEFT$,
RIGHT$, and MID$ functions.

MAD

? RIGHT$(F$,4)

DAME

? MID$(F$,2,3)

ADA

We can use the "+'" operator to concatenate the two strings:

MADAMEBOVARY

You see that the concatenation is complete--there are no blank spaces between
the strings. We can insert a separating blank into the concatenated full
name by adding a blank string to the concatenation operation.

NM$! + F$ + " " + L$

MADAME BOVARY

One attribute of a string is its length. Length is a numeric value that
is equal to the number of characters contained in the string. The LEN function
returns that value.

13

If LEN returns a value of zero, it means the string is null, or empty.

If you want to set a string to empty during the course of a program, simply
assign the string variable to a null string, delimited by two immediately
adjacent quotation marks.

0

A primary use of the LEN function is in the positioning of string information

on the screen. To center information on the screen, for example, you must

know the length of the string so that you can compute the value of the X
variable in the OUTPUT statement. Since the width of the screen is 112

pixels, the mid-point on the horizontal axis is at an X-value of 56. Characters
are six pixels wide, so you have to backspace three pixels from the center line

4-2

for each letter in the string to be displayed. 1If you want to center the
string stored in F$, then type the following statement to compute the value
of X:

X '= 56—3*LEN(F$)

To continue with our direct mode example, let's output the two strings
""MADAME'" and '"'BOVARY" on two centered lines.

INDOW 36
CLS

OUTPUT F$,X,66,1
QUTPUT L$,56-3*LEN(L$),60,1

[INDOW, 77

Note that we can use the variable X in the command to display F$ (''MADAME"),
because we defined X for F$ previously in direct mode. We must compute

the X-coordinate for L$, however, because the string may be a different
length. (In this case they happen to be the same.)

Data Mode Conversions

In Interact BASIC, a variable exists in one of two modes--numeric or string.
While other languages may have additional modes (integers, double precision,
etc.), we need to be concerned with only these two modes.

You may occasionally have the need to convert data from one mode to the

other for processing. The VAL and STR$ functions facilitate this conversion.
The VAL function takes numeric data that is stored in a string and converts

it into a numeric variable that may be manipulated in the same way as any
other numeric variable. For example, let's say we have a program that
normally accepts numeric information in response to INPUT statements in

the program. We may, however, want to be able to enter non-numeric information
such as HELP or END to communicate with and control the program flow in

a straightforward manner. TIf an INPUT statement requests numeric data

and you type HELP, the crror message '"?REDO FROM START'" is displayed and

the INPUT prompt repeated. This can baffle the first-time user. That

error message is built into BASIC--there's no way we can suppress its printing.

An alternate method of handling this problem would be to input all the

data in the program as string data, then check each string to see if it

begins with one of the acceptable keywords. If it did, then the requested
task would be performed, such as printing a helpful message. If it did

not, the program would assume that the string is really numeric data and

use the VAL function to place the '"string' data value into a numeric variable.
The sample program on the following page illustrates the concept of converting
data modes. The program accepts numeric student numbers or the keyword

"END'"'.

4-3

398 CLS:COCLOR ©,1,7,3

318 CLEAR (3003

320 OUTPUT "ENTER STUDENT", 16,66, 1
338 OUTPUT“NUIMBER OR TYPE", 10,60, 1
349 OUTPUT"’ EHD’ ", 10,54,1

350 WINDOW 48&

360 INPUT F$®

370 1IF P$="END" GQTO 1000

3880 P=VUAL(F%)

393 REM-CODE GOES HERE TO WORK WITH
400 REM-STUDENT, P.

4180 REM

412 PRINT"GOGD STUDENT 1'”

420 GOTO 3009

999 REM-WRAPUP PROGRAM

1660 CLS

1508 PRINT"DONE"

1518 END

The reverse process uses the STR$ function to make a string value out of
any given number. For example,

B$ = STR$(N)
takes the numeric value of N and stores it in string format in B$. This

can be useful in formatting columnar data in printed reports. See the RS232

Loan Evaluator program to examine an application that uses this concept
extensively.

String Input from the Keyboard

There are three ways in which you can accept string data from the keyboard
in programs:

INPUT Statement INPUT B$
INSTR$(n) C = INSTR$(1)
Keyboard Peecks IF PEEK(24529) = "N" THEN ...

Let's examine each of these approaches in more detail.

4-4

e

The INPUT statement is by far the most common approach. INPUT is used

in several examples throughout this manual. You can type a string any

length in response to the INPUT "?'" prompt. With INPUT data entry, all

other processing stops until the input operation is complete. You must

press the "CR'" key to enter the data before the next statement in the program
can be executed. 1In addition, if the information being entered contains
embedded commas that are to be considered part of the string as opposed

to separators between strings, then such strings must be enclosed in quotation
marks when they are entered.

l''CHICAGO, ILL"

is accepted as a single string in response to the input query, while

i''CHICAGO","IL"

or

HCHICAGO, IL

is accepted as two scparate strings which will be read into two string
variables. As a number of typing errors can easily be made when attempting

to place quotation marks around string input, we suggest that your programming
techniques work toward reducing or eliminating entirely the cases in which
quotes are required.

The INSTR$(n) function is the most useful in accepting short strings of
information from the keyboard. With INSTR$, you are freed from having

to press '"CR'" to enter the string. The most common use of the INSTR$ function
is as a '"pause control'". The statement

A$ = INSTR$(1)

halts program execution until you strike a key, any key, on the keyboard.
The value stored in A$ is not important, although it can be used for display,
conditional testing, or other purposes in the program if desired.

You can also use the INSTR$ construct to ask for YES/NO (Y or N) input

from the keyboard or in menu selection. 1In this case, the value of the
string variable is tested to determine what operation the computer will
subsequently perform. The following program illustrates using INSTR$(1)

to select a difficulty level in a game by typing the first character of

the level's description. The character typed determines the value of the
numeric variable, D, for program difficulty. Although it is not illustrated
here, D would then presumably be referenced later in the program code during
game play.

4-5

20 GOSUE 1@0

22 PRINTD

5% END

188 CLS:COLCR 7.1,2,4

118 OUTPUT®"LEVEL OF PLAY ?",15,66,1
126 OUTPUT"E = EASY",27,54,2

138 OUTPUT"I INTERMED. ", 27,48,2
140 OUTPUT"D = DIFFICULT",27,42,2
156 OUTPUT"S = SYUICIDE",27,36,2
1680 AF=INSTR®&(1}

176 IF A%="E" THEN D=1:RETURN

189 IF A%="I1" THEN D=2:RETURN

199 IF A$="D" THEN D=3:RETURN

208 IF A%="S" THEN D=4:RETURN

218 GOTO 169

Peeking the Keyboard

The last method we'll consider for accepting character data from the keyboard
is the "keyboard peek'. This technique employs the PEEK function to examine
a specific memory location which is known to contain the ASCII value of

the last character depressed on the keyboard. Because other audio and visual
effects aren't inhibited by the wait for input, as they are with both INPUT
and INSTR$, keyboard peecking can provide a method for keeping the screen
active while awaiting input.

The following program illustrates a game that does not start until the space

bar is depressed. You might use such a technique for unattended game operation
in which you want the program to "idle' if no one is playing the game.

4-6

5 CLS:COLOR G,7.1.3

18 POKE 19215,25

280 GOSUB 100

22 CLS:COLOR B,7,1,3

25 OUTPUT"SHORT GAME*, 25,60, 1

380 OUTPUT"HUH ?*,42,54,1

48 FOR Q=1 TO 18080:NEXT

45 CLS

58 GOTO 20

186 POKE 24529,0

1180 OUTPUT*"PLAY WITH ME !'*,18,60,1
115 OUTPUT"HIT SPACE-BAR", 15,18,3
116 OUTPUT*TO START",32,12,3

120 IF PEEK(24529)3=32 THEN RETURN
138 COLOR ©0,1.3,7

140 FOR Q=1 TO 30:NEXT

159 COLOR 1,0,3,7

168 FOR Q=1 TO 30:NEXT

170 GOTO 120

The memory location where the ASCII code for the last character entered
is stored is 24529. To use this in a program,you must first store a zero
in this location to destroy all record of past characters. You can then
establish a program loop that looks for a value of 32 in that location.
If it finds a value of 32 there, then program execution restarts. 32 is
the ASCII value of the space bar, as can be seen in the ASCII character
table included with the CHR$ entry in the Reference Section.

Storing Strings on Tape

The CSAVE and CLOAD commands let you write and read dimensioned numeric
arrays to cassette tape. For example, the statement

CSAVE*Z

copies all of the data in the numeric array named Z to cassette tape, providing
that a tape has been mounted in the tape deck and that the READ and WRITE
cassette buttons have been depressed.

How do you copy the contents of a string or string array to tape?

CSAVE*A$

would seem the natural approach, but this won't work. Instead, you must
convert the string characters into their ASCII equivalent codes and store
them in a numeric array. Then, if you save that numeric array, you arc
essentially saving the string data to tape.

When you want to read the data back in, you'll CLOAD the data back into
a numeric array, then convert the numeric data back to its string form

47

with the CHR$ function.

Two subroutines that can be included in your programs for data conversion
are listed below. Note that the length of the string is written to tape

in the first word of the array. 1If you do a GOSUB 300 within a program
containing these subroutines, you can write the string S$ to tape. To read
the data back into the string S$, perform a GOSUB 400. The numeric array,
B, (for Buffer) is an array for working storage which must be dimensioned
sufficie;tly long in the calling program to contain the longest string.

For example, you might begin this program with the statements

10 DIM B(50)
20 S$ = "MICRO VIDEO"
30 GOSUB 300

If you want to run this program to test the subroutines, be sure to position
the tape correctly for the reading and writing operations. 1In an actual
program, you would want to include tape positioning instructions and the
REWIND command in your program logic to facilitate the process.

299 REM-TO TAPE SUBROUTINE
300 B(1)i=LEN(S$)+1

310 IF B(1)=1 THEN CSAUVE#*B:RETURN
320 FOR J=2 TO B(1)

330 L$=MID®(S®%,J-1,J)

340 B(J)=ASC(L$)

350 NEXT

36560 CSAVE#*B: RETURN

380 REM

3339 REM-FROM TAPE SUBROUTINE
400 S$="":CLOAD*B

410 IF B(1l)=1 THEN RETURN
420 FOR J=2 TO B(1)

430 S$=S$+CHR$(B(J))

440 NEXT:RETURN

A slightly more sophisticated approach can be used in which three characters
can be "packed" into each position of the B array. Consult the DATALOG
program listing for more information on how to use this storage technique.

4-8

INTERACT GAMESMANSHIP

(Controller Input)

You say you want to program an action game? You want it to be a one-person
game using the entertainment controller? You want some visual excitement,
sound effects, and a little strategy required to get a high score? Have

we got a game for you! In this chapter, we'll see how we can take an idea,
develop it a portion at a time, and end up with an entertaining action

game in BASIC. Our game will illustrate the use of the FIRE and JOY functions
to control the action in the game.

Our idea for this game is a variation of the popular EARTH OUTPOST I machine
language game, adapted to the BASIC environment. In the program, we'll

have our own Earth Station that will be able to move laterally across the
screen under joystick control. When the program is completed, we'll be

able to shoot down fixed targets in a black sky and score points based

on how many targets we hit. We don't want the game to run endlessly, so
we'll use an internal clock to control the length of the game in a timing
loop. The object of the game will be to determine the order in which the
targets should be attacked to get the highest possible score within the

game period. We'll do all this in only one page of BASIC code!

We'll start, of course, by typing the NEW command in direct mode to prepare
the computer for entry of a new program. Our first program line will be

a REM line to identify the program for future generations of admirers.

Then, we'll clear the screen and select the color set--a black background
with red, white, and yellow foreground colors. We'll draw the ground area
and a line across the top of the screen to define the playing area in red,
using two single Microsoft 8K BASIC PLOT statements. That's enough to

start with...let's look at how we'd put this into our initial program lines.

10 REM#%* MICRO ARCADE *%%
28 CLS:COLOR ©,1,3,7

38 PLOT 1,1,1,112,10

40 PLOT 1.79,1,112,1

50 A$=INSTR®(1}

Note that we've used the INSTR$ function in line 50 to hold the screen

image after it's drawn, so the BASIC "OK'" prompt and scrolling won't appear
immediately. We'll take this line out, of course, as we proceed with develop-
ment of the program.

Next, we'll add the character to represent our Earth Station and develop

a subroutine to move it back and forth across the screen without exceeding
the screen limits in either direction. In looking through the non-standard
characters, as described in the Graphics chapter (3-11), we find that a
CHR$(6) secems like a reasonable character to use for the Earth Station,

so we'll store it in a string variable named GUN$. We'll choose a random
starting (X) position for the Station, then OUTPUT the Station at that
random point. (These steps are done on lines 50-60 of the listing on the
following page.)

5-1

To establish the duration of the game, we'll create a loop that checks

repeatedly for movement of the joystick lever
joystick lever is moved to the left or right,
to a subroutine that moves the Station to the

via a subroutine. If the
we'll pass program control
left or right in increments

of 2 pixels. At the end of this duration, or
the program with an END statement.

timing, loop, we'll terminate

10
20
30
40
59
52
=1
70
106
280
285
300
310
360
362
364
365
380
382
384
385
390

REM#®*% MICRC ARCADE *#%
CLS:COlLOR 9,1,3,7
PLCOT 1.1,1,112,10
FLOT 1,70,1,112,1
X=RND(1)#100+5
GUN$=CHR%(6?
QUTPUT GUN#%,X, 16,2
FOR 7=1 TO 500

GOSUB 300

NEXT

END

ON JoY(®B) GOTO 360,380
RETURN

IF X<6 THEN RETURN
XK=X-2

OUTPUT GUNS$,X+2,16,0
GOTO 385

IF X>112 THEN RETURN
X=X+2

OUTPUT GUNS$,X-2,16,0
OUTPUT GUNS$,X,16,2
RETURN

The subroutine that starts at line 300 checks the joystick position on the
left controller via the JOY(O) function call. Since our Station can move
only laterally, we're only interested in two values (Left=1, Right=2).

We can therefore use the ON...GOTO construction to transfer program control
to line 360 or 380 if a value of 1 or 2 is returned, respectively. All
other values of JOY(O) simply pass control to the next statement, a RETURN
statement that returns control to the main program duration loop.

Before we increment X (line 382) or decrement it (line 362), we must first
check to see that we have not exceeded the limits of the screen. If we
have, we RETURN to the next iteration of the main program loop. 1If we can
move, we'll modify the value of X, erase the old Station by redrawing it
in the background color in either line 364 or 384. Finally, we OUTPUT the
new position of the Station at position X in line 385, then return to the
next iteration of the main program loop.

We should check this program at this stage of development to be sure it's
operating correctly before the "plot thickens" (if you'll pardon the pun).
Oops! We forgot something. In order to display the character in CHR$(6),

we have to set BASIC's pointer to the character table by using the instruction
PRINT CHR$(8) (the backspace character). We'll do this in line 51.

5-2

Now that we've developed our basic screen image and output the Station,

we need to place some random 'targets' in the nighttime sky. We'll do
this in a subroutine that indexes in the X-direction two pixels at a time
and randomly plots single pixels in the sky (lines 700-760). Fifty percent
of the time we'll plot a point somewhere along the Y vertical line, so

that a bullet will encounter at most one target along any given vertical
trajectory. Once a target is hit, we'll stop the bullet's upward movement.
Within this subroutine, we'll also set the game score variable, Z, to zero,
foreshadowing the concept of automatic game restart. Since we're placing
the targets two pixels apart at the closest, and the Station moves in two-
pixel increments, it's important that the ship always start on an even
pixel location. Therefore, we'll rethink our original random positioning
of the station and decide to set the initial position of the ship at 50
(line 50) instead. Our program now looks like this:

10 REM##%% MICRO ARCADE %%%

20 CLS:COLOR @,1,3,7

38 PLOT 1,1.1,112,10

4@ PLOT 1,70.1,112,1

50 X=50

51 PRINTCHR$(S)

52 GUN$=CHR%(6)

B8 OUTPUT GUN$.¥, 16,2

65 GOSUB 7@0:REM-SPRINKLE TARGETS
70 FOR T=1 TO 1020

168 GOSUE 380:REM-MOUE GUNSHIP

2880 NEXT
2395 END

388 ON JOY(@) GOTO 360,388
318 RETURN

36@ IF X<5 THEN RETURN

B2 K=¥-2

364 OUTPUT GUNS$,%+2,16,0
365 GOTO 385

280 IF X>1i2 THEM RETURN
392 X=¥+2

384 OUTPUT GUNS.X-2.16.0
385 OUTPUT GUN$,X, 16,2

399 RETURN

700 FOR R=18 TO 186 STEP 2
715 IF RND(1)>.58 GOTC 748
728 B=20+45$PND(1)

739B PLOT A,B,2

740 NEXT

TS50 Z2=0

760 RETURN

5-3

Now that we've got our space station and target displays in order, we need

to add the capability of firing at the targets. Again, we'll use a subroutine
to perform the operation. We'll call the subroutine from within the main
program loop by adding two more lines. The first, at line 80, tests to

see if the fire button on the left controller is depressed. If it is not
depressed (FIRE(O)=1), we'll go back to line 100 and execute the subroutine
for Station movement again. If the fire button is depressed (line 80 tests
false), then we'll execute a subroutine to fire a bullet. 1In this subroutine,
the first three lines (500-520) will generate an explosive sound. Then,

in a loop (530-560), we'll propel the bullet upwards with the variable Y.

But, before each upward movement, we'll check to see if the target has been
hit with the POINT function (line 532). 1If it has been hit, we'll flash

the screen, remove the target, and increment the score stored in the variable
Z before returning to the main program loop for the next gunship movement.

If the target is not hit, we'll keep incrementing the upward movement with

Y until the loop is exhausted and the bullet is at the top of the screen.

Then we'll make a '"dud" sound (580) before returning to the main program

loop. Now, our program looks like this:

10 REM#*#%% MICRO ARCADE *%%

28 CLS:COLOR ©0.1,3,7

30 PLOT 1,1,1,112,10

480 PLOT 1,790,1,112,1

50 X=50

51 PRINTCHR®(8)

52 GUN$=CHR$(6)

68 OUTPUT GUNS$,X,16,2

65 GOSUB 780: REM-SPRINKLE TARGETS

70 FOR T=1 TO 1000 56068 SOUND 1,512
80 IF FIRE(GA)=1 GOTO 100 518 FOR QG=1 TO 4@:NEXT
82 GOSUBSBA:REM-FIRE BULLET 5208 SOUND 1,513
188 GOSUB 300:REM-MOUVE GUNSHIP 522 XP=X+2
280 NEXT 538 FOR Y=19 TO 69
295 END 532 IF POINT(XP,Y)X>2 GOTO 540
3686 ON JOY(@) GOTO 360,380 533 2Z2=2+1
310 RETURN 534 PLOT XP,Y,0:PLOT XP,Y-1,0
360 IF X<6 THEN RETURN 535 SOUND 1,514:COLOR 7,3,1,0
362 X=X-2 536 FOR Q=1 TO 10:NEXT
364 OUTPUT GUNS, X+2,16,0 537 COLOR ©0,1,3,7:S0UND 1,515
365 GOTO 385 538 RETURN
380 IF X>112 THEN RETURN 540 PLOT XP.Y,3
382 X=X+2 550 PLOT XP,Y-1,0
384 OUTPUT GUNS,X-2,16,0 568 NEXT
385 OUTPUT GUN$®,X, 16,2 578 PLOT XP,69.09
390 RETURN 580 TONE 600,8
608 RETURN

700 FOR A=10 TO 186 STEP 2
715 IF RND(1)>.58 GOTO 740
7280 B=20+45%RND(1)

738 PLOT A,B,2

740 NEXT

758 Z2=0

7680 RETURN

5-4

In this program, our main controlling loop in lines 70-280 contains only
five statements. The rest of the program is performed through subroutines.
In this main loop, we increment a time counter, T, to 1000 before the game
ends. Finally, we'll add lines 286-288 to display the score when the time
counter has expired. We'll also embed a RUN command in line 289 to start
the game over again automatically.

286 OUTPUT"YOUR SCORE IS*,15,6@,3
287 OUTPUT Z,46,50,3

288 FOR Q=1 TO 108@0@:NEXT

289 RUN

The final program listing for this game is presented on the following page,
In retrospect, we find that a few lines are really unnecessary. This is
frequently the case in developing a complex program. We can remove lines
295 and 750 with no resulting difference in program operation.

Game Extensions

No game is ever really '"done.'" Modifications and improvements can always
be made, and the Micro Arcade is no exception. Here are some ideas you
might want to implement with this program as an exercise in game programming.

a) Find an alternate character for the Earth Station. Examine other
non-standard characters, or use two or more ''overlaid" characters
with the OUTPUT statement.

b) Add sound to the movement of the Earth Station.

c) Add difficulty levels that will change the number of targets and game
duration. Accept input from the keyboard to determine what the difficulty

level will be.

d) Maintain the name and high score of the '"current winner' and display
it at the end of each game.

e) Use multiple color targets and award points for their destruction
that are inversely proportional to the color's frequency of occurrence.

5-5

1@ REM#%# MICRO ARCADE #%%
20 CLS:COLOR ©,1,3,7
39 PLOT 1,1,1,112,10
4@ PLOT 1,70,1,112,1
580 =50
51 PRINTCHR$(S)
52 GUN$=CHRE(E)
58 QUTPUT GUNS$,X, 16,2
B5 GOSUB 700:REM-SPRINKLE TARGETS
70 FOR T=1 TO 1280
8@ IF FIRE(B)=1 GOTO 1809
32 GOSUBSO0:REM-FIRE BULLET
198 GOSUB 30@:REM-MOUE GUNSHIP
280 NEXT
2386 OUTPUT"YOUR SCORE IS*,15,60,3
287 OUTPUT Z,46,52,3
288 FOR Q=1 TO 1000:NEXT
285 RUN
295 END
3B ON JOY(®) GOTO 360,380
318 RETURN
360 IF %<6 THEN RETURN
362 X=X-2
354 OUTPUT GUNS$,X+2,16,0
365 GOTO 385
283 IF X>112 THEN RETURN
382 X=X+2
384 OUTPUT GUNS$,X-2, 16,0
385 OUTPUT GUNS$,X, 16,2
398 RETURN
500 SOUMD 1,512
510 FOR Q=1 TO 48:NEXT
522 SOUND 1,513
22 XP=X4+2
530 FOR Y=19 TO 69
532 IF POINT(XP,Y)<>2 GOTO 540
533 z=7+1
534 PLOT ¥P,Y,B8:PLOT XP,Y-1,0
535 SOUND 1.514:COLOR 7,3,1,0
536 FOR Q=1 TO 10@:NEXT
537 COLOR @,1,3,7:SOUND 1.515
538 RETURN
548 PLOT XP,Y,3
550 PLOT XP.Y-1,0
S6@ NEXT
570 PLOT XP,E69,0
580 TONE 600, 8
600 RETURN
700 FOR A=10 TO 186 STEP 2
715 IF RMD(1)>.50 GOTO 740
720 B=20+45%RND(1)
728 PLOT A,B.2
740 NEXT
750 Z2=0
760 RETURN

5-6

READING DATA

So far, we've examined several ways in which data can be entered for use
into a BASIC program:

Keyboard Input — Using INPUT, INSTR$, or keyboard PEEK
Controller Input — Using POT, JOY, and FIRE functions
Tape Input — Using CLOAD* to load arrays of numeric data

or a numeric representation of string data

In this chapter we'll examine a fourth general method of entering data
into a program--use of the DATA, READ, and RESTORE statements. This approach
can be effective for entering large numbers of constants or table data
into a program--to supply parameters for TONE sequences, (x,y) coordinate
pairs for graphic image development, mathematical tables for calculations.
In this programming approach, the data values are stored as constants in
line-numbered DATA statements. The READ statement pulls the requested
number of data values from the list in a sequential pass through the data
stream. The RESTORE statement resets READ's internal pointer back to the
first item in the first DATA statement, which lets you READ data items

in a list more than one time in a single program.

There are several advantages to keeping data in this form:

1) The data values are stored as a list in the program itself instcad
of being typed in during program execution. The list can be easily
referenced, stored, listed, and changed just like you would change
any portion of the program's logic.

2) The data list can be read repeatedly during the execution of a program,
selectively referenced, and passed on to the program's processing
logic.

3) Surprisingly large amounts of tabular data can be entered with little
storage overhead, even with the Interact BASIC's 4698 bytes of memory.

4) Data lists can be stored on tape in separate files and used in programs
by adding the file to a program with the EZEDIT APPEND command. Thus,
the concept of a ''data library' can be achieved. For example, you
could write an extensive musical repertoire which consists of a series
of files with DATA statements that contain TONE parameters, the number
of tones, and the title of the work. A BASIC music program could
then be developed to play, transpose, or display any tune, similar
to the Music Maestro program.

However, there are two drawbacks to this approach to data entry:

1) The amount of data that can be stored and accessed is limited by the
amount of available RAM and the program logic size.

2) The stored data values cannot be changed by program logic. Changes
to the data can only be made by retyping the DATA statements and using
CSAVE to store the changed program.

DATA statements provide an "invisible stream'" of data that flows through
normal program execution. DATA statements are never actually executed;
they are only "seen" and accessed by the READ statement, which is the only
statement that knows that they exist. READ has an internal pointer that
keeps track of how many values have been read from the list during program
execution.

You can use DATA statements for multiple purposes within a single program.
For example, you might have DATA statements containing TONE parameters, and
also DATA statements containing string values to be displayed during program
execution. These two operations might be completely unrelated in the flow
of program execution. Technically, you could combine data values for both
these operations onto the same DATA statement. However, that can lead to
more complicated program logic to access the values and more work if you
want to add or change a data value. Generally, we advise you to store sets
of related data values on one or more adjacent DATA statements and place
data values for unrelated operations on separate DATA statecments.

The following Sounds Library program illustrates the use of DATA statements
to catalog information. 1In this program, there is a DATA statement for

each sound in the library. Each sound has four related items of information:
two numeric sound parameters and two strings of descriptive text. In the
program, these four items are called S1, S2, T1$, and T2$.

18 REM-SOUNDS LIBRARY

20 CLS:COLOR @0,3,1,7

380 MAX=5

48 FOR N=1 TO MAX

5@ CLS

60 READ S1,S52,T1%,T2%

70 OUTPUT T1$,20,60,1

80 OUTPUT T2%,20,54,1

82 OUTPUT S1,40,408,2

84 OUTPUT S2,52,40,2

99 SOUND S1,S2

1860 FOR Q=1 TO 2003:NEXT

185 NEXT

110 SOUND 7. 4895

111 CLS:PRINT"DONE" :END

1260 REM-SOUNDS LIBRARY

130 DATA 3,182,°PT 189" ,""
149 DATA 5,392,LO0CUST, ATTACK
158 DATA 3,66, 1938 PLYMOUTH,STUCK HORN
168 DATA 6,460,PHASER, **

178 DATA 6, 170, TELEPHONE, RING

Note that we entered a null string as the fourth parameter in lines 130
and 160. Because the READ statement accesses the data sequentially, four
items at a time in this program, we must use null strings to keep our data
consistent. If we just omit that fourth parameter in lines 130 and 160,
the READ statement would take the first data item in the next line as the
fourth parameter. This would not only yield an incorrect display on the
first sound processed, it would also create an error when the computer
reads the second set of four data items. Therefore, we include the null
string to tell the computer that there is no fourth parameter in those
cases——READ can't make any assumptions about our data as it references
it.

You can expand this program to catalog and play back your own favorite
Interact sounds. All you have to do is enter additional DATA statements
following line 180 and change the value of MAX in line 30 to reflect the
current count of your sounds. No other change to the program logic is
required to handle the increased amount of data.

Reading Complex Data Tables

The items in DATA statements can be read more than once during the execution

of a program. This is convenient when you want to access table data repeatedly
in your programs. The following program illustrates how to compute the

Federal Estate Tax for estates of a wide range of sizes. The DATA statements
in the program contain the values in the table below.

FEDERAL ESTATE TAX
Net Taxable % Tax in
Estate Estate Tax Next Bracket
Up to $10,000 18% of amount
$ 10,000 $ 1,800 20%
20,000 3,800 22
40,000 8,200 24
60,000 13,000 26
80,000 18,200 28
100,000 23,800 30
150,000 38,800 32
250,000 70,800 34
500,000 155,800 37
750,000 248,300 39
1,000,000 345,800 41
1,250,000 448,300 43
1,500,000 555,800 45
2,000,000 780,800 49
2,500,000 1,025,800 53
3,000,000 1,290,800 57
3,500,000 1,575,800 61
4,000,000 1,880,800 65
4,500,000 2,205,800 69
5,000,000 2,550,800 70

6-3

18 REM: FEDERAL ESTATE TAX
20 REM: CALCULATOR

3@ CLS:COLOR 4,3,0,7

4@ PRINT:PRINT"NET TAXABLE"
5@ PRINT"ESTATE IN®
€2 PRINT"THOUSANDS (©0@@)"
78 INPUT M
80 IF NT<® GOTO 78

S@ GOSUB 3090

108 PRINT"TAX= ";ET

112 GOTO 7@

308 IF NT<1@ THEM ET=.18%NT:RETURN
389 RESTORE

313 DD=-1

320 READ T1,T2.T3

=® DD=DD+1

349 IF NT>T1 GOTO 328

360 REM:HAUE PASSED APPROPRIATE BRACKET
370 REM:RESTORE AND READ DOWN SGAIN
375 RESTORE
388 FOR A=1 TO DD
339 READ T1,T2,T3

400 NEXT

410 ET=T2+T3#(NT-T1)
428 RETURN
488 REM- FEDERAL ESTATE
482 REM - TAX TABLE
508 DATA 1v,1.8,.2

518 DATA 28,3.8,.22

529 DATA 40,8.2, .24
539 DATA 60, 13,.26

548 DATA 80.18.2, .28

558 DATA 10@.23.8,.3

560 DATA 15@.38.8, .32

570 DATA 250,70.8, .34

588 DATA 50@, 155.8, .37

598 DATA 7508.248.3,.39

600 DATA 1000@.345.8, .41
618 DATA 1250, 448.3, .43
6280 DATA 15008,555.8, .45
630 DATA 2000,7508.8, . 49
6§40 DATA 2500, 1825.8, .53
550 DATA 3000,1290.8, .57
550 DATA 35808,2575.8, .61
670 DATA 4200, 18808.8, .65
680 DATA 4500,2205.8, .69
658 DATA 50090,2550.8, .70
8#@ DATA 9%999,0,0

64

]

Given the Net Taxable Estate, NT, the program searches the table to find

the corresponding tax bracket. Once it finds the correct bracket, it performs
tax computations using information in the previous line of the table.
Therefore, the tax table must be read twice for each tax computation in

this program.

How does this work? Well, let's say the estate was valued at $200,000.

If you look at the table on page 6-3, you'll see that this bracket is between
$150,000 and $250,000 categories. To compute the tax the program uses

the values associated with the $150,000 line in the table.

ET = 38,800 + .32%(200,000-150,000) = 54,800.00

The first READ of the table in line 320 looks for the data corresponding
to the Net Taxable Estate amount entered in reponse to the INPUT statement
in line 70. However, since the program calculates the tax based on the
values on the previous line in the table, it has already passed by the
values it needs to use for the calculations. Therefore, it must go back
and read through them again. The RESTORE statement in line 375 recturns
READ's internal pointer to the first data item in the first DATA statement
(line 500) so that all values in the table can be referenced again.

To conserve RAM space, we could combine two lines of the table (or cven
three) into a single DATA statement. Each DATA statement would then have
six values associated with it, e.g.,

500 DATA 10,1.8,.2,20,3.8,.22

With this construction, fewer lines are used to store the same amount of
data; hence, less RAM is consumed. There would be no change in the operation
of the program.

Consult the DATA, READ, and RESTORE statements in the Reference Section
for further explanation and ecxamples of this mode of data entry.

SUBROUTINES

A BASIC program is, as we have seen, a set of statements that are performed
in line-numbered order, unless the statements themselves direct BASIC to
begin executing a statement at another line. Statements which change the
order of program execution include the GOTO and GOSUB statements.

The GOTO statement simply transfers control to a specified line in the
program. Essentially, it's a '"one-way ticket" to a destination in the
program. GOSUB, on the other hand, is analogous to a '"round trip ticket'.
GOSUB tells the computer to transfer program execution to a subroutine

that begins on a specified line, but to remember the point at which the
GOSUB was made so that program control can be returned to the statement
following the originating GOSUB when the subroutine completes. In the
subroutine, you tell BASIC you want to make the '"return trip'" by concluding
it with a RETURN statement.

A subroutine, then, is a set of instructions that is executed from a GOSUB
statement elsewhere in the program. Subroutines are generally positioned
outside the general flow of the program, and their statements are executed
only when a GOSUB to the starting line number is encountered during program
execution. Subroutines are virtually always terminated with RETURN statements.
Subroutines may be nested--that is, a subroutine may in turn call another
subroutine which in turn may call another subroutine, etc. But, as GOSUB

and RETURN statements come in pairs, BASIC is able to find its way back

to the main program logic.

Using subroutines is good programming practice. The bencfits of using
them are:

1) Subroutines conserve memory. The logic for a single subroutine can
be called from numerous points in the program by GOSUB statements,
rather than repeating the statements several times within the program
logic. Thus, programs with subroutines generally consume less RAM,
or, conversely, you can build larger programs in the same amount of
RAM.

2) Subroutines make programming ecasier. A subroutine's logic needs to
be debugged only once. After it is operational, you can usually take
for granted that it will do what it is supposed to do when it's called.

3) Subroutines mean less typing. You only have to type the statements
once.
4) Subroutines allow better coding. You can afford to develop better

subroutines that include error checking, consistent performance, etc.,
if you know you only have to develop them once.

5) Subroutines also make program modification easier. You can make changes
that affect the operation of the entire program all at once within
the subroutine, rather than having to modify statements at several
spots within the program.

Take, for example, a simple subroutine that accepts a "Y' or "N" from the
keyboard. It might be used several times in a program that requires the
user to respond to a series of yes/no questions. The subroutine below sets
the variable S to a value of 1 if the answer to the question was "Y'" or

to O if the answer was '"N'". No other keys can satisfy the subroutine; it
will not perform any further program execution until a "Y" or "N'" is typed.

500 A$=INSTR®(1)

510 IF A%="Y" THEN S=1:RETURN
520 IF A$="N" THEN S=0:RETURN
538 GOTO E60

Pause loops can frequently be placed within subroutines and called to allow
the user to read a screen of instructions, to vary visual displays, ctc.
A pause loop that takes approximately one second to perform is

FOR K = 1 TO 480:NEXT

By placing this statement in a subroutine which is given the number of seconds
to pause with the variable S, we can build a generalized subroutine.

18080 SM=480%S
118 FOR Z2=1 TO SM:NEXT
1280 RETURN

Then, if we place this subroutine within a program that requires pauses

of different durations to accompany different operations, we can compute

and perform the pause loops from this generalized timing loop. The following
program calls this timing loop three times, from lines 50, 78, and 90, with
pause durations as specified by the variable S.

18 REM - BELAYING WITH A SUBROUTIME
28 CLS:COLOR 4,7,1,2

380 PRINT“HOLD THIS MESSAGE*"

48 PRINT"FOR 18 SECONDS*

58 S=16:G0SUB 1006

68 CLS

78 REM-FLASH EVERY .5 SECONBS, 18 TIMES
72 OUTPUT"HI",58,54,1

7S S=.5:FOR N=1 TO 19

77 COLOR 7,4,1,1

78 GOSUB 190

88 COLOR 4,7,1,1

99 GOSUB 188

95 MEXT

97 END

99 REM-BELAY LOOP SUBROUTINE

180 SM=480+%S

118 FOR Z=1 TO SM:MzZXT

1260 RETURNM

7-2

Subroutines are commonly used in Interact BASIC to:
e Read and play TONE information from DATA statements

e Plot a complex graphic entity whose position on the screen is
specified in variables external to the subroutine

e Accept yes/no information from the keyboard
e Initialize a game grid or display

e Perform a set of complex arithmetic operations that are common
to several portions of the overall program logic

e Sort data

e Read or write string data to cassette tape by converting the
string information into equivalent numerical arrays

7-3

INTERFACING WITH THE BASIC ENVIRONMENT

This section contains some general operating hints for interfacing with
BASIC. These suggestions on how best to carry on a meaningful dialogue
with your computer will help make your programming life easier.

Storing Programs on Tape

Always store programs on tape during program development, particularly

if the program is long and involved. As soon as you get part of it completed
and working to your satisfaction, use the CSAVE command to store it on

tape. Then, if operation of BASIC is inadvertantly interrupted, you won't
lose your entire program and have to start all over again. This is especially
important if your program uses POKE statements, as it is completely possible
to POKE your program out of existence through a faulty value or mistyped

POKE location.

In addition to providing you with "back-up' copies of your program in the
event of a BASIC ''disaster'", saving your program at various stages of develop-
ment lets you back up easily if you decide to alter the working of the

program radically.

Take advantage of the file naming option when you use CSAVE to store a
partial or completed program on tape, especially if you're saving multiple
programs on the same data tape. If you save files with names, they are
ecasier to CLOAD later when you want to back up or restart a program.

Tape Positioning

Before you issue the CSAVE command to save a program,or CLOAD to read one

in, you may need to position the tape for reading or writing. You can

do this with the REWIND command. REWIND turns the tape motor on. You

can then use any of the cassette drive buttons to control tape positioning.
Use the REWIND or F-FWD buttons to move the tape backward or forward quickly.
You can also use the READ button for slower forward tape positioning.

READ lets you position the tape accurately, because you can hear the data
sounds and tell where one program begins and another ends. Although you

will hear "tape loading' sounds if you depress the READ button during REWIND
command execution, no data is being read into your computer. You'll avoid
overwriting and destroying other programs on the tape if you use this operating
control in BASIC.

Note that if you depress both the READ and WRITE cassette buttons during
REWIND execution, any information stored on the tape will be erased.

Control Characters

Your Interact has several control characters that can be used to affect
program execution or listing. Control characters are issued by pressing
the Control and another key simultaneously.

Control-C acts as a ''break' key during program execution or listing. If
you type this Control character, BASIC finishes printing the

8-1

line it's listing or executing, then stops program execution or
listing.

Control-S lets you halt program execution or listing temporarily, to examine
a program line or screen detail. Execution of the program or
the listing continues when any key is depressed.

Control-U acts as a 'cancel' key. It stops the line you were typing at
the time you issued the Control-U from being entered into memory.
You can use this to abort a line during program entry.

Control-0 is used during program execution to suppress output from PRINT
statements. This can be useful if you are printing out a long
list of data and don't particularly want to see it. The Control-0
is cancelled when an OUTPUT statement is processed. Control-0
suppresses output from the PRINT command only and has no effect
on other program statements.

What Happens When You Press RESET?

If you press the RESET button, the current execution of BASIC is stopped,
including program execution and listing. Parameters of some commands, such
as COLOR, are returned to the default state when you press the "R'" key to
restart BASIC. The setting of WINDOW is also returned to 77. Variables
are not reset, however, nor is the value of the CLEAR statement affected.

We recommend that you not use RESET to stop a program. Use Control-C instead,
especially if the program contains OUTPUT statements. I1f you depress RESET

at the same time that BASIC happens to be processing an OUTPUT statement,

that OUTPUT statement is likely to be 'clobbered". 1If you restart BASIC

and run the program again, you may get a syntax error ("?SN ERROR") or other
error when BASIC encounters the damaged OUTPUT statement.

Program Debugging

There are a number of means for debugging programs. You can use the GOTO
line number and RUN line number commands in program debugging, as discussed
in Program Execution (page 2-16). You can also use the EZEDIT program -editor
to make global corrections in your program, resequence it, etc.

You can also use the STOP statement within a program to act as a breakpoint.
A program containing a STOP instruction will terminate execution when the
STOP instruction is encountered. This can be useful in program debugging.
Let's say, for example, that you've got an error in part of your program.
You suspect it is the setting of a variable, but you aren't certain. You
can put a STOP statement in that part of the program, and, when the program
stops, you can PRINT the variable to check its current value, change the
value if necessary, then type

CONT|

to resume execution where the program left off, using the new variable value.

8-2

Space Saving Hints

There's a programmer's maxim that states: "A program always grows in size

to fill the memory available, regardless of the size of the computer's
memory.'" Because the Interact has limited memory capacity, you'll want

to write programs efficiently to utilize RAM to the maximum. Consider

the following list of hints on how to save space before you write even

the first line of a program that might eventually encounter memory limitations.
If you can incorporate these suggestions into your own programming style,
you'll be surprised at the complexity of programs that can be developed

in the 4,698 bytes of memory your Interact has for BASIC programming.

1) Use subroutines extensively. 1If certain operations are similar through-
out a program, then put them in subroutines or in a set of nested
subroutines to conserve space. Using GOSUBs to invoke processing
whereever possible, rather than repeating statements, consumes considerably
less RAM.

2) Combine statements on a single line. Many sequences of statements
can logically and easily be placed on a single line by separating
the individual statements with colons (:). Compacting programs in
this manner reduces the program size.

3) Reuse variable names. Try to use simple variable names--1, J, P,
Q, etc., for non-related operations such as pause loops, rather than
defining new variable names. Each variable you name requires another
entry in the symbol table.

4) Use short variable names. Single-character variable names consume
less RAM than longer names.

5) Use CLEAR(O). If your program does not use any string variables,
place a CLEAR(O) statement early in your program to eliminate the
space automatically allocated for string variables by BASIC. This
increases the space available for numeric variables or statements
by 50 bytes (to 4748 bytes). Do not use CLEAR(O) if you use even
one string variable. 1In this case, you could use CLEAR to reduce
the string variable space to all but a few bytes.

6) Omit the END statement. END is not required to terminate a program
and can be omitted without affecting program operation.

7) Use REM statements sparingly, if at all. Remark statements, while
they do document a program's operation, require precious RAM for storage.
Use them only when absolutely necessary and be prepared to delete
them from programs to gain memory as programs increase in size.

8) Use Microsoft 8K Fast Graphics BASIC. This BASIC has the same capabilities
as the older Level II BASIC, but its extended PLOT capabilities let
you eliminate many FOR...NEXT loops associated with screen graphics
entirely. Microsoft 8K BASIC lets you develop larger programs using
the same amount of RAM.

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

Omit embedded blanks. Blanks are not necessary in BASIC statements.
In fact, BASIC ignores them. You can omit blanks without affecting
program operation, except as needed in string constants.

Place frequently called subroutines on low line numbers. Line numbers
also consume RAM, and, by placing these subroutines on lines with single
or two-digit line numbers, the line number references in subsequent
GOSUB statements will be shorter and consume less RAM.

Omit the iteration variable name in NEXT statements. The variable name
is optional and can be omitted to gain a couple bytes of storage from
each FOR...NEXT loop.

Use AND and OR in IF statements to test multiple conditions, rather
than using multiple IF statements. The logic for multiple tests can
usually be combined into a single IF statement.

Use the IF...THEN construction and chain multiple statements to be performed
if the condition tests '"true" following THEN. This method generally
requires less RAM than the IF...GOTO construction. (See Conditional
Relationships in Chapter 2 for an example of reducing program size in

this way.)

Use the "wrap-around'" feature of the OUTPUT statement. When using OUTPUT
to display text on the screen, multiple lines can be directed to the
screen from a single OUTPUT statement by embedding the necessary number
of blanks in the string.

Store frequently used string constants or numeric values in variables.
The subsequent reference to the variable name will generally require
less RAM than repeating the string or the computation, particularly

if the strings or computations are lengthy.

Use the zeroth element of arrays. Note that a DIM A(10) statement
actually allocated eleven locations (A(0) - A(10)). Use the A(0) cell
for data storage.

Use variables to dimension multiply-dimensioned arrays. The statement
DIM A(N,M) allows dimensioning to occur during program execution to
fit the size required by the program, rather than over-dimensioning

to fit a maximum-sized problem.

Consider a program's intent when converting programs from another computer.
Many programs have long PRINT statements that require large amounts

of RAM. Converting such programs into a graphic orientation may make

them more interesting as well as more space-efficient.

Use user-defined functions. The DEF statement can help you eliminate
repeated calculations of sub-expressions. Such redundancy will usually
consume more space for computational processes than is actually needed.

Consider program segmentation. If your program is a large, sequential
operation, you may be able to divide it into two or more separated programs
that are called with CLOAD statements at the end of each program.

21) Use DATA statements for data reference in programs. DATA statements
are more efficient for working with preset tables of numeric or string
information than is assigning the table values to dimensioned arrays.
The extra time required to RESTORE and READ the DATA statements is
usually insignificant, while the space savings are substantial. You
save space because only one 'copy' of the information resides in RAM,
rather than two. We also recommend that you put as many data values
into a single DATA statement as possible.

8-5

-

RS232 BASIC

RS232 BASIC is a version of Level IT1 BASIC that has been expanded to provide
the capability of accessing a lineprinter to produce program listings or
formatted reports. It has all the same language capabilities and features
as Level II BASIC, but with two additional commands—-LLIST and LPRINT.

Your Interact must be equipped with an RS232 peripheral interface in order
to load and run RS232 BASIC. If you attempt to load RS232 BASIC into an
Interact that does not have the peripheral interface, the interpreter will
appear to load correctly, then return to the DEPRESS L TO LOAD TAPE screen.
This happens because RS232 BASIC attempts to initialize the port when it
loads. 1If it does not find a port to initialize, the interpreter cannot
function properly.

Lineprinter Access

Two commands are available for accessing a lineprinter in RS232 BASIC.

The LLIST command produces a lineprinter listing of the BASIC program currently
in memory. LLIST can be used in direct mode only. To produce a listing,

type

LLTST

The LLIST command will appear on your TV screen. The program, however,
will list out on the lineprinter.

Like the LIST command, LLIST will let you specify a starting line number
for the program listing. If you have a program that's 500 lines long, and
you only want to-see the last 200 lines, you might type

LLIST 300

The program listing will begin with line 300. Listed lines can be up
to 72 characters long.

The LPRINT command also outputs information to a lineprinter. LPRINT can
be used in direct mode, but it's more commonly embedded in a program to
produce formatted reports, analyses, summaries, etc. In this case, the
LPRINT command is not executed until the program is RUN.

Like the PRINT command, LPRINT can be used to display various types of
string or numeric information. It operates in the same way that the PRINT
command does, allowing multiple items to be included on a single statement.
You'll find the arithmetic display control functions (discussed in chapter
2, page 2-11) to be useful for formatting output to the lineprinter with
LPRINT.

What kind of printer should you use with your interface and RS232 BASIC?
The only restriction on the kind of printer that can be used to produce
formatted reports and program listings with your Interact is that it must
be RS232-compatible to run directly off the interface port.

If you go shopping for a printer to keep your Interact company, you'll find
that there are many different RS232-compatible printers over a wide price
range. The price you'll pay for a printer, of course, is directly related
to the printer's features and capabilities.

Personally, we like the COMPRINT 912-S. It provides consistent quality
hard copy that photocopies extremely well. Virtually all the examples in
this manual were produced on our RS232-equipped Interact with RS232 BASIC
and our COMPRINT 912-S printer.

I1/0 Parameter Control

Although you can use any RS232-compatible lineprinter with the Micro Video

peripheral interface and RS232 BASIC, some printers are not set up to operate

under the default input/output parameters in RS232 BASIC. The default I/0
parameters in RS232 BASIC are:

1200 BAUD

8-BIT WORD LENGTH, 1 STOP BIT

ODD PARITY

You can control the settings of the I/0 parameters as appropriate to your
particular printer by using the POKE command to store non-default parameter
values in several different memory locations.

Baud Rate

RS232 BASIC and the Micro Video interface can be used to drive an RS232-
compatible lineprinter at standard and non-standard baud rates between 110
and 19200 bps. The default, 1200 baud, is the most commonly used baud rate.

To set the baud rate between 600 and 19200, use the following POKE initiali-
zation:

POKE 25098,A ; BAUD LATCH AT .COOOH

where A = 111860/desired baud rate. To make things a little simpler, the
table below identifies the value of A for standard baud rates.

A = BAUD RATE
186 600
93 1200
47 2400
23 4800
12 9600
6 19200

9-2

To set a baud rate lower than 600 bps, a two-byte divisor must be initialized
with two separate POKE statements.

POKE 25098,A
POKE 25099,B

The following table defines the values of A and B for standard baud rates
slower than 600 bps.

A = B = BAUD RATE
116 1 300
232 2 150
246 3 110

Note: Some devices do not operate at exactly standard (600, 1200, etc.)
baud rates. If you have difficulty using a device with your Interact
and RS232 BASIC, it is far more likely that the device's required
baud rate is slightly off standard than that there is a problem
with your computer or interface. Try decreasing or increasing the
baud rate divisor slightly for correct operation of the printer.

Data Format

The default data format parameters in RS232 BASIC are 8-bit word length
with 1 Stop bit, odd parity. Although this is a standard format used by
most printers, some devices require a different data format. To set the
individual bits for a non-default format, select as appropriate from the
following statements.

Start with:

A=20

To change word length:

A=AORDO ; FOR 5-BIT WORD LENGTH
A=AO0OR1 ; FOR 6-BIT WORD LENGTH
A = A OR 2 3 FOR 7-BIT WORD LENGTH
A =AOR3 ; FOR 8-BIT WORD LENGTH (DEFAULT)

To set number of Stop bits:

A = A AND 251 ; FOR 1 STOP BIT (DEFAULT)
A =AOR Y4 ; FOR 2 STOP BITS

To set parity on or off:

A
A

A AND 247 5 FOR NO PARITY CHECKING
A OR 8 ; FOR PARITY CHECKING (DEFAULT)

9-3

To set even or odd parity:

A = A AND 239 ; FOR ODD PARITY IF PARITY SET ON (DEFAULT)

A = A AND 16 ; FOR EVEN PARITY IF PARITY SET ON

Then, to initialize the non-default format, POKE the value of A into memory
location 25100.

POKE 25100,A ; LINE CONTROL REGISTER AT .COO4H

You can reset to the default data format with the statement

POKE 25100,11

This is, of course, not the most efficient way to define format parameters.

This explanation in intended to explain the construction of the value to

be POKEd into location 25100. To determine the value of A for your particular
device, you can enter these statements in direct mode and then use the statement

PRINT A

to obtain the value of A. Then, for future use, you can poke that value
directly into location 25100.

If you have a printer that uses non-default I/0 parameters, you must initialize
the parameters in BASIC before trying to access the printer. The best way

to do this is to build a small initialization program and store it on tape.
You'll enter and run this initialization program before you try to produce

hard copy with your printer. Note that the interface is not initialized

with the latest POKE information until BASIC reinitializeg_ztself, which

is signalled by the reappearance of the "OK" prompt.

Line Feed Control

You can also control automatic line feeding on your printer through RS232
BASIC. The line feed flag is initialized a O (no line feed). To set automatic
line feed upon encountering a carriage return, use the statement

POKE 25097,10

Program Listings

You can get listings of your Level II BASIC programs or of programs written
in RS232 BASIC. (You can also get listings of Microsoft 8K BASIC programs,
although you will not be able to execute any extended PLOT commands under
RS232 BASIC control.) To list a program written in RS232 BASIC, just type

LLIST

If you want a listing of a Level .I1 or Microsoft 8K BASIC program, that
too is possible. However, one other step is required. You must use the

9-4

TRANSLATE command in RS232 EZEDIT to convert the programs into RS232 format.
RS232 BASIC has internal formatting different from Level II or Microsoft

8K BASIC because it has the two additional commands in its keyword tablej;
therefore, non-RS232 BASIC programs must be converted into the different
format.

There's another method you can use to get 1%stings of your programs, even
if you're not ready to invest in an interface and printer. Micro Video
offers a printer service to those who do not have the printer capability
on their Interacts.

Machine Language Integration -- the USR Function

With the Micro Video MONITOR, you can write your own machine language sub-
routines, then call them from a BASIC program with the USR function. Before
entering the USR function, you must define the starting address (LSB and
MSB) of the machine language routine you want to call. You do this by
entering two POKE statements. The value put into the first POKE location
(30499) defines the least significant bit (LSB) of the starting address.

The value put into the second POKE location (30500) identifies the most
significant bit (MSB). Since machine language addresses are in hexadecimal,
but BASIC requires that you enter a decimal value with the POKE statement,
you must convert the starting address into two decimal values. See the
Hexadecimal /Decimal Conversion Table in chapter 11 to convert your subroutine's
starting address to decimal quickly and effortlessly.

POKE 30499,L
POKE 30500,M

USR

Note that the USR call in RS232 BASIC is different from the other BASIC
interpreters. USR calls in Microsoft 8K and Level II BASIC require that

the argument, (0), be included on the call. 1In RS232 BASIC, the USR keyword
is entered alone, as shown above.

In concluding our discussion of RS232 BASIC, following are a lineprinter
listing of an RS232 BASIC program that accesses a lineprinter and the '"hard
copy" result of running that program.

18 LPRINT * TEST PROGRAM*®
20 CLEAR(C208)

30 A% = "°

40 FOR CH = 32 TO 96

50 A% = A% + CHRS$(CH)

60 LPRINT A%

78 NEXT

9-5

|
|
|
'

TEST PROGRAM

N
R 3
N 534

" #B%&
"#BRE&’
" #$%E&
"H#BRE&’
"#BRE&’
"#BR&
Y H#BR&’
" #BRE&
"H#BRL&’
YHBRL’
" HBRE’
"HB%RE&’
" # L&’
" HBR&’
"#B%R&
"H#BR&
"HBR&’
"H#$RE&
"HB%E&’
"H#BRE&
"H#BR&
"H#BR&’
"H#BRE&’
"HBR&’
"HBRE’
"HBRE&’
"HBR&
"#BRE&’
"HBRE&’
"HBRE’
"HBRE&
"HBRE&’
"H#BRE&’
"HBRE&
"#BL&
"HBR&’

(

(@)
()%
)%+
)+,
)%+,
C(¥%+,
)%+,
C)%+,
C Y+,
54,
)%+,
C 3%+,
)%+,
)%+,
)%+,
)%+,
)%+,
(%4,
C Y%+,
C)#+,
)&+,
C)w+,
(I%+,
)%+,
)%+,
)%+,
€I+,
)%+,
%4,
%+,

..’0
.701

Ak

/8Le

./01234
./0812345
.70123456
.70123455657
.70812345678
./78123456789
. 78123456789:

-./8123456789:

./8123456789:
.780123456789:
.-0123456789:
.70123456789:
./0123456789:
./B8123456789:
./8123456789:
./08123456789:
./8123456789:
.7B0123456789:
.78123456789:

()%+,-.-0123456789:
)%+, -.-0123456789:
()s+,-./0123456789:

L]
]
o

9-6

HAY

<=

i K=>

3{=>7

3<=>7@

;<{=>7@RA

3 <=>7@AB
:<{=>7@ABC

3 <=>7@ABCD

; {=>7@ABCDE

3 {=>7@ABCDEF

3 {=>?@ABCDEFG
3 {=>7@ABCDEFGH
3 <=>7@ABCDEFGHI

BASIC

A TO Z

Reference Section

ABS

ABS

ABS is an arithmetic function that returns the positive numeric value of

the given argument, disregarding the negative sign if it exists. The absolute
value of a number, G, is defined as G if G is greater than or equal to

zero and -G if G is less than zero. This function has the form:

ABS(n)
where:

n is a numeric value. n may be a constant, variable, function
call, or arithmetic expression.

You could compute the absolute value of a number within a BASIC program
statement such as

IF G < O THEN G = -G

However, it is easier and more space-efficient to use the ABS function
to perform the task, in a statement such as

G = ABS(G)

The value returned by the ABS function will never be negative. ABS is
useful for finding the actual difference between two numbers without regard
to whether they are positive or negative. You might also use it to convert
negative values returned by other function calls into a positive value

that could be used in other mathematical calculations or screen display.

EXAMPLE

18 CLS

15 FORX=1T0112:PLOT X,28,3:NEXT
280 FOR X=1 TO 112

30 Y=20+30%*ABS(SIN(X/6))

42 PLOT X,Y,2

580 MEXT

60 GCTO 10

10-1

AND

AND

AND is a relational (BOOLEAN) operator that performs a logical, bitwise
ANDing operation on two or more relations. Generally used in conjunction
with IF statements, AND tests to determine that both of relations adjacent
to the AND keyword are true before performing the subsequent part of the

IF statement. The results of any ANDing operation is either '"true" or 'false'.

Both of the relations must test true for the rest of the conditional operation
to proceed. If one or both test to be false, then program control passes
to the next higher line-numbered statcment.

EXAMPLE
19 PRINT"ENTER SEX,AGE"
20 PRINT"TO 7 PRCOMPT"
38 INPUT SX$,AG
40 IF SX$="M" AND AG>280 THEN PRINT "MAN"
59 IF SX$="F" AND AG> 20 THEN PRINT "WOMAN"
68 IF SX%$="M" AND RG<21 THEN PRINT"BOY"
78 IF SX$="F" AND AG<Z21 THEN PRINT "GIRL"
89 GOTO 19
NOTES

AND may also be used in IF statements along with the other logical operator,
OR. See the IF statement for further details on using AND for conditional
testing.

10-2

ASC

ASC

ASC is a function that converts alphanumeric characters into the code in
which they are stored in memory—--their ASCII equivalents. ASCI1 is one

of two universal codes used for character handling in all computers. This
function has the form

asc(as) Asc ("p")
where:

a$ is any alphanumeric character stored in a string variable
or as a string constant for which the ASCII equivalent
(decimal code) is to be returned. If the ASCII equivalent
for a string constant is to be returned, the string must
be enclosed in quotes within the parentheses.

ASC is commonly used to convert string data to numeric representation so
that it can be saved on tape for future use in programs. The following
example illustrates a subroutine that performs a character-by-character
conversion of a string to numeric data.

EXAMPLE

In this subroutine that converts string characters to their ASCIT equivalents,
the string is treated as a dimensioned array. The conversion is performed

by indexing through the elements of the string array with a loop and
converting the Ith character of the array to numeric form. To use this
subroutine within a program, you would also want to include a CSAVE* command
to store the converted array on tape. See Chapter 4 for more information

on this type of string handling and a complete example of the conversion
subroutine.

3808 WACL)=LENCNE(I))+1

318 IF WAC1)=1 THEN RETURN
328 FOR J=2 TO WAC1)

330 L$=MIDE(N$.I),JT-1,3)
348 WA(J)I=ASC(L%>

358 NEXT J

360 RETURN

NOTES

ASC is a '"'cousin' of the CHR$ function, which can be used to convert numeric
data back to string data. See the CHR$ function for more information on

that function and a table of ASCII equivalents for characters on the Interact
keyboard.

10-3

ATN

ATN

ATN (arctangent) is a trigonometric function that computes the angle, in
radians, that has the tangent specified in the function argument. It has
the general form

ATN(n)
where:

n is a numeric argument to the function. n may be a numeric
constant, variable, or arithmetic expression that represents
a tangent.

The result of the ATN function, if printed, is expressed in radians. For
example,

PRINT ATN(.707)

returns the value .615408, which is equal to 45 degrees.

EXAMPLE

There are 2 radians in a circle, and 57.2958 degrees in a radian. The
following example illustrates how to convert an angle's tangent to number
of degrees.

S PRINT

180 INPUT"TANGENT";T

20 A=ATNCT)

38 D=57.2958%A

40 PRINT"ANGLE IN DEGREES"
58 PRINT"IS":D

60 GOTO 5

NOTES

ATN is one of several trigonometric functions that can be used in BASIC.
Others are TAN, COS, and SIN.

ATN is used extensively in the Aircraft Lander BASIC program to spread the
runway visually as the aircraft approaches the landing field.

10-4

CHRS

CHR$

CHR$ is a string handling function that is a 'cousin'" of the ASC function.
While ASC converts characters into their decimal equivalent codes, CHR$
does the reverse. Given a numeric value, CHR$ returns the character that
is stored in memory as that number. CHR$ has the form

CHR$(n)
where:

n is a numeric constant, variable, or expression for which
the associated character is to be returned.

CHR$ is frequently used to convert the numeric representation of string

data back into string form. Because only numeric data can be stored on

tape, string arrays must be converted to numeric values with the ASC function
for storage with CSAVE*. They are later read back into a program with
CLOAD*, then converted back to string form with CHR$. See Chapter 4 for
details on this process.

EXAMPLE

We ran this small program in RS232 BASIC to produce the data for the ASCII
Equivalents Table on the following page. If you do not have the RS232
interface and a lineprinter, change the LPRINT statements in this program
to PRINT statements to display the values on your TV screcen.

10 LPRINT TAB(28); "ASCII EQUIVALENTS TABLE®
15 LPRINT:LPRIMT:LPRINT

20 FOR I = 33 TO 126

30 LPRINT I;TAEB(B);CHR®C(I)

40 NEXT

NOTES

See the ASCII Equivalents Table on the next page to view the Interact character
set.

10-5

CHRS

ASCII EQUIVALENTS TABLE

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
43
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

oo N @

+ * o

T OO NDDADNWNFE N

(NN BRI | VAN]

65
66
67
68
69
70
71
73
74
75
76
77
78
79
&0
81
82
83
84
85
86
87
88
89
=l
s1
92
93
94
95

S /S AN XECCHNWAODOZIrRyHIOTMOOWD

g7
398
93
1600
191
102
183
104
185
106
107
108
183
110
111
112
113
114
115
116
117
118
119

120.

121
122
123
124
125
126

- J R 0D o0 go

3 - X

3

R~ NL K E CCct+tpy T0T O

10-6

1

CLEAR

CLEAR

CLEAR is a statement that can be used in either direct or indirect mode
to set all variables equal to zero or to allocate memory for string handling.
It has the form

CLEAR[n]
where:

n is an optional numeric constant which, if included, defines
the number of bytes of memory to be reserved for strings.

If CLEAR is used without the argument n, all variables
are reset to zero and the amount of space allocated for
string handling returns to the default, 50 bytes.

CLEAR is normally placed at the beginning of a program that needs more

string space than the default of 50 bytes. If used, it should be placed

in the program before any DIM statements, because, in addition to setting

all variables to zero, CLEAR also '"undimensions'" all arrays. Note that

as you allocate more memory for string handling, the amount of memory available

‘for programming decreases.

CLEAR stays at the value set until it is respecified by another CLEAR statement,
or until BASIC is reinitialized by reloading it. The NEW statement does

not reset CLEAR to the default, nor does the RESET-R restart sequence.
Therefore, if you use a CLEAR statement in one of your programs, remember

to reset it in direct mode before running other programs, as they may not

run unless they also contain a CLEAR statement.

If you try to save more string data than for which space is allocated,
an '"?70S ERROR" will result. This happens because you are trying to save
more text than the program allows. Correct the error by using the CLEAR
statement to allocate more bytes for string storage.

EXAMPLE

Type the following statements in direct mode to see the result of the CLEAR
statement:

?FRE(0)
4698
LEAR(2500)
RE(0)
2198
? nAn)
2500

))
o
'™
N
o

(@] o B
E;
;H

?FRE(0)
4698
FRE(HAH)
50

-

10-7

CLEAR

NOTES

Use the ?FRE("A") statement to find out how many bytes of memory are allocated
for string handling.

You cannot CLEAR more memory than is available.

There are actually more than 4698 bytes available for programming, because
BASIC by default allocates 50 bytes for strings. If you type CLEAR(O),
then type the ?FRE(O) statement, you will see that BASIC returns available
memory of 4748 bytes. Use this with caution, however, as it requires that
the program have absolutely no string handling.

10-8

CLOAD

CLOAD

CLOAD is a direct mode command or indirect mode program statement that
allows you to load a program or data array into memory from tape. CLOAD
can take three forms:

CLOAD
CLOAD '"mame"
CLOAD*a

where:

name is the name, enclosed in quotes, you assigned to the program

when you saved it on tape with the CSAVE command. ''mame"

is optional on CLOAD, even if you saved the program with

a name. However, if you have more than one program stored
on a tape, using 'mame'" tells BASIC to look for and load
only the program with that name. 1If a program with that
name cannot be found, the tape will continue to run, and

you will have to use the RESET-R secquence to resume normal
BASIC operation.

a is a dimensioned array name into which an array that has
been stored on tape will be read. We recommend that the
array you read into be dimensioned identically to the specifi-
cations in which it was written to tape, particularly if
it is multi-dimensioned, so that BASIC will handle it properly.
You must specify "a'" if you use CLOAD* to enter array data.
BASIC always loads the full array stored on tape when you
use the CLOAD* command.

EXAMPLE

To write a numeric array to tape, you could use a sequence as follows:

180 DIM A¢25)
20 FOR I=1 TO 25:ACI)=I:NEXT
38 CSAVE*A

Then, to read the data back in, your program might be:

18 DIM ACZ25)
20 CLOAD=*A
30 FOR I=1 TO 25:PRINT ACI):NEXT

NOTES

CLOAD turns the tape motor on. For reading in numeric arrays, the tape
should be properly positioned before CLOAD is issued. You can use the
REWIND command for tape positioning. The READ cassette button should be
depressed before a carriage return to execute CLOAD is given.

10-9

CLOAD

CLOAD —-- NOTES

CLOAD cannot be used to load string data from tape with the form CLOAD*A$.
BASIC stores information, whether textual or numeric, on tape as numeric
data. You must therefore have a routine in your program that converts string
data to numeric data to CSAVE* it on tape, and another routine to convert

the numeric data back to string form before it can be reused by the program.
See Chapter 4 and the ASC function for an example of such a routine.

10-10

CLS

CLS

CLS can be used as a direct mode command or a program statement. In both
cases, CLS clears the TV screen of any information currently there. 1In
direct mode, the BASIC "OK" prompt appears at the bottom of the screen
immediately after the screen is cleared. When CLS is used within a program,
the screen remains blank until another program statement causes something

to be output.

In direct mode, CLS may be followed by a WINDOW command to aid in graphics
development. CLS is also frequently used as one of the first instructions
in a program so that the program begins execution with a fresh screen.

EXAMPLE

18 CLS
20 PRINT"WHAT’ S YOUR NAME®
3@ INPUT N$

35 CLS

48 FOR I=1 TO 100

5@ C=RND(1)%8

60 OUTPUT N$,35,40,C

70 NEXT

80 GOTO 10

NOTES
Alternate methods for clearing the screen with more visual variety include:
e PLOT 1,1,0,112,77 to wipe the screen clear from left to right

e PLOT 1,1,1,112,77:PLOT 5,5,0,102,68 to wipe from left to right in
two different colors

e Vector Graphics Subroutines for various other wipe effects, such as
windshield wiper wipes, circular wipes, diagonal wipes, triangle wipes

10-11

COLOR

COLOR

Your Interact has eight colors available for information display and animation.
However, only four of the eight colors can be in use at any one time. The
COLOR statement lets you select the color set you want to use in direct

mode or your programs. It has the form

COLOR colorO,colori,color2,color3
where:

colorO is one of the eight available colors, referenced by color
number (see below). The color defined in this position
of the color set determines the background color of the
screen.

colorl is one of the eight colors, as above. The color in this
position in the color set is the color in which program
line numbers appear when a program is listed. colorl can
also be referenced from a PLOT or OUTPUT statement.

color? is one of the eight available colors, as above. The color
in this position in the color set is not used unless referenced
by a PLOT or OUTPUT statement.

color3 is one of the eight available colors, as above. The color
in this position of the color set is the color in which
your program lines appear when the program is listed. color3
is also the color in which the BASIC "OK" prompt and error
messages appear. color3 can be referenced with the PLOT
or OUTPUT statement.

You can select from the following colors to specify the color set:

- BLACK

- RED

— GREEN

- YELLOW/ORANGE
BLUE

— MAGENTA

- CYAN (LIGHT BLUE)
- WHITE

~No v W e O
|

Any of the colors defined in the color set can be used for display with
an OUTPUT or PLOT statement by referencing its position in the color set,
as shown in the example below.

EXAMPLES

18 CLS:COLOR 9.6,3,1

20 OUTPUT"GREETINGS",30,60, 1
3@ OUTPUT"FROM", 42,50, 3

4@ OUTPUT"MICRO VIDEO",25S,40,2

10-12

COLOR

COLOR —- EXAMPLES

19 CLS:COLOR 8.6.3,1

20 OUTPUT"GREETINGS", 30,60, 1
38 OUTPUT"FROM", 42,50, 3

4@ OUTPUT"MICRO VIDEO", 25, 40,2
5@ FOR C=1 TO 208

60 COLOR 7,0,2,4

65 FOR P=1 TO 5@:NEXT

70 COLOR 9,7,2,4

75 FOR P=1 TO 5@:NEXT

80 NEXT

NOTES

The COLOR statement sets the color registers, The color register shares
a bit with the tape motor control function. Therefore, when you use a
COLOR statement, the tape motor is automatically shut off. See chapter
3 (page 3-2) for information on colors and tape motor control.

The color set established with the COLOR statement is reset to the default
when the RESET-R sequence is used to restart BASIC. The default color
sets are:

COLOR 4,3,0,7 - Level I1 and RS232 BASIC

COLOR 0,3,4,7 — Microsoft 8K BASIC

We suggest you establish your program colors early in the program and to
change them within program execution with regard to aesthetic effects.

10-13

COS

Cos

COS is a trigonometric function that computes the cosine of an angle, given
the angle in radians. It has the form

C0S(n)
where:
n is an angle, expressed in number of radians, for which the

cosine is to be returned. n can be a numeric constant,
variable, or expression.

EXAMPLE

180 PRINT:PRINT"ANGLE IN DEGREES"
280 INPUT DE

38 R=DE/57.2958

48 PRINT COS(R)

58 GOTO 1@

NOTES

COS is one of several trigonometric functions intrinsic to BASIC. Others
are SIN, ATN, and TAN.

10-14

CSAVE

CSAVE

CSAVE is a command that can be used in direct mode or from within a program
to save a program or numeric data array onto tape. CSAVE can take three
forms:

CSAVE

CSAVE '"name"

CSAVE*a
where:

"name"' is an optional name, entered in quotation marks, that you
can assign to a program when you store it on tape. Only
the first five characters of ''mame'" are written to tape,
although the name can be as long as you wish. 1If a program
is saved on tape with an assigned name, it can be reloaded
later with or without specifying the name.

a is a dimensioned array from which data is to be stored
on tape. BASIC always saves the full array named 'a' on
tape with the CSAVE command.

EXAMPLE

Examples of using CSAVE to store data on tape, then read it back into memory
can be found in chapter 4 and with the CLOAD entry in this chapter.

NOTES

CSAVE cannot be used to save string data with the form CSAVE*A$. BASIC
stores information, whether textual or numeric, on tape as numeric data.
You must therefore have a routine in your program that converts string
data to a numeric representation to CSAVE the data on tape. You must also
have another routine to convert the numeric data back to string form to
reuse the data after reading it back into memory. See the ASC function
and chapter 4 for examples of this operation.

CSAVE turns the tape motor on. For writing programs or numeric arrays

to tape, the tape should be properly positioned before the CSAVE command

is given. Use the REWIND command for tape positioning. The READ and WRITE
cassette buttons should be depressed before executing CSAVE.

Always use the REWIND command to position the tape forward slightly before
issuing a CSAVE. This will ensure that all the leader tone required to
read the program back in successfully will be recorded. If you are saving
a program or array data on a tape that already has other information stored
on it, use the REWIND command and the READ cassette button for proper posi-
tioning of the tape.

10-15

DATA

DATA

DATA statements provide a convenient, space-efficient method of entering
constant or specific (table or plotting) data into a program. DATA state-
ments may be used anywhere within the program because they are never executed.
The READ statement is used to reference the data items in DATA statements.
DATA statements have the form

DATA item[,item,item,...]
where:

item is a string or numeric data value that is to be entered
into the program. More than one data value can be included
in a single DATA statement. The data values are entered
separated by commas. String data may or may not be enclosed
in quotation marks. You must use quotes, however, if the
string contains an embedded comma, for example, "Ann Arbor,
Michigan', since the comma is the delimiter in DATA statements.

DATA statements are particularly useful when you have a lot of constant
data to enter. It is less time—consuming and more space-efficient to enter
the data with DATA statements and the READ statement than to store the data
points in dimensioned arrays.

Data values in the DATA statements are not accessible to the program until

they have been read into variables with the READ statement. The first READ
statement executed starts with the first data value on the first DATA statement
in the program and reads subsequent data values sequentially. READ has

an internal pointer that "remembers'" where it left off. Subsequent READ
statements begin reading data with the value following the last data value
entered with the previous READ statement. After a data value has been READ

in, the value will not be reused unless a RESTORE statement is given to

reset the READ internal pointer.

EXAMPLES

In the following example, the number of data points entered with the READ
statement is controlled by the iterations in the FOR...NEXT loop.

180 CLS

280 Y=60

38 FOR NL=1 TO 4
40 READ XL, XH

58 vy=Y-2

68 FOR X=XL TO XH
78 PLOT X,vY,2

80 NEXT X

986 NEXT NL

1868 DATA 190,906
118 DATA 20,80,30,78, 40,50

10-16

-

DATA

DATA —-- EXAMPLES

Note that one or more data points can be entered with a single READ statement.

The following example requires Microsoft 8K BASIC:

18 CLS

20 Y=60

38 FOR NL=1 TO 4

48 READ XL, XH

58 Y=Y-2

60 PLOT XL,Y,2,xXH-XL+1,1
70 NEXT NL

80 DATA 10,90

989 DATA 20,86,30,70,40,50

Numeric data can be entered as string data, as shown in the example below.
String data cannot, however, be entered in place of numeric data.

180 DATA"ANN ARBOR, MI*®, 48104

280 DATA"CORONADO, CA", "92118", "MINNEAPOLIS, MN",55409
38 FOR I=1 TO 3

49 READ A%,B%

589 PRINT A%;:" ";B$

60 NEXT

NOTES

If you try to READ in more data values than appear on the DATA list, a
""?0D ERROR" will result.

Other examples of using the DATA and READ statements to enter data are
included throughout this chapter. See READ, RESTORE, LOG, and POS for
other examples that use this data entry method. Also, consult chapter
6 for further information.

10-17

DEF

DEF

DEF statements let you define your own functions within a program for operations
used multiple times. DEF might be considered a one-line subroutine with
a built—-in RETURN statement. DEF statements take the form

DEF FNabc(n) = expression

where:
abc is a user-defined function name that must begin with the
characters 'FN'. You can choose the rest of the function
name as appropriate for what the function does.
n is a numeric variable which acts as the argument on which
the function is to be performed.
expression is the operation that is to be performed whenever the function

FNabc is called within the program.

You must be able to summarize the function you define with a DEF statement
in a single statement. Complex operations cannot be defined as functions;
use subroutines instead.

DEF statements can be used in indirect mode only.

EXAMPLES

The following classic example uses a user-defined function to round fractions
of cents to the nearest penny.

18 DEF FNPT(ZQ)=INT(ZQ%18080 +.5)-/10600
20 PRINT

38 INPUT"AMOUNT";Z2Q

48 PRINTFNPT(ZQ)

58 GOTO 26

The next example shows how you might use the DEF function to calculate the
sales tax for any given amount. In this example, sales tax is 4%.

18 CLS

20 DEF FNTX(A)=A%.04
38 INPUT*SALE AMT";A
40 TX=FNTX(A)

58 PRINT"TAX IS:";TX
60 PRINT

78 GOTO 30

10-18

DIM

DIM

The DIM statement allocated storage for arrays (lists or tables) of information
to be referenced and used later in the program. DIM statements typically
appear near the beginning of the program. A DIM statement must be given

for any array of information that has more than 10 data elements; arrays

with fewer than 10 elements may be automatically dimensioned by BASIC.

Any single array should be dimensioned only once in the flow of any program.

An array must be dimensioned before information can be stored in it or
referenced from it. The DIM statement has the form

DIM a(n[,q,r,s,t]

where:
a is the variable name under which items in the array will
be stored and later referenced by subscript. 'a' can be
a string or numeric variable name, to dimension a string
or numeric array.
n[,q,r,s,t] identifys the maximum subscript for each dimension in the

array. An array can have up to 5 dimensions. The dimensions
are generally used as follows:

- rows

- columns

layers

- undefined, possibly time
— undefined

T n <0 3
|

'n' (q,r,s,t) can be a numeric constant, variable, or expression.
Its value specifies the highest subscript that will be

used to reference that particular dimension of the array.

As the first subscript location of any array can be O,

there is actually one more location per dimension than

specified by the maximum subscript value. For example,

DIM A(20) allocates 21 locations for array A, which are
referenced as A(0O) through A(20) to return the data elements
stored in the array locations.

You can dimension more than one array with a single DIM statement. For
example,

DIM A(20),BD$(12,1),CN(14,X+5,3)

allocates storage for three arrays—-two numeric (A and CN) and one string
(BD$). A A has one dimension that can be subscripted to a maximum
value of (28!) BD$ has two dimensions——twelve rows and I columns. Note
that variables can be used as the maximum subscript specifier in a DIM
statement. This allows maximum flexibility in sizing the array to fit
the problem during program execution. The value of the variable used as
a subscript can be supplied in a number of different ways, but the value
of the variable must be defined before the DIM statement is executed.

10-19

DIM

DIM

You can dimension arrays up to the space available. If you try to dimension
an array larger than the available RAM or more arrays than for which RAM
is available, an "?0M ERROR" will result.

EXAMPLES

18 DIM AC15)

28 FOR I=1 TO 15

38 INPUT ACI)

40 NEXT

45 PRINT"ARRAY CONTAINS: "
59 FOR I=1 TO 15

60 PRINT ACI)

70 NEXT

The next example illustrates the use of a variable in place of a numeric
constant in the DIM statement. This feature lets you dimension as appropriate
to the size of the problem, rather than setting up a huge array which may
contain unused subscripts. In the following example, the program user would

be requested to enter a value that would be used as the maximum subscript
for the array(s).

18 PRINT“NUMBER OF"
28 INPUT "STORES®";S
38 DIM SALES(S),EMP(S)

Using variables instead of constants can also be useful for performing mathe-
matical operations on a matrix of variable size. You can set the size and

dimensions of the program during program execution, as well as index the
data values in the arrays. For example:

180 PRINT"MATRIX SIZE"
20 INPUT N,M
38 DIM ACN,M)

Data items stored in an array are referenced according to their dimension
and subscript position within that dimension. 1In the following example,

the program sets up a 3 by 4 (12 slot) matrix as shown below on the right,
computing the values of each subscripted position by indexing through the
array with FOR...NEXT loops. 1In running this program, to find out the value

in any cell in the matrix, enter the subscripts for the cell's position
(1,J).

10-20

DIM

DIM
AR, 1) A(%,2) A(%,3) A(*,4)

A(L,%)| 11 12 13 14
1@ DIM A(3,4) A(2,%) 21 22 23 24
20 FOR I=1 TO 3 :
30 FOR J=1 TO 4 A(3,*)| 31 32 33 34
40 ACI,JT)=10%I+7
50 NEXT:NEXT
60 INPUT"WHAT CELL";I,J
70 PRINTACI,J) 4’

-

80 PRINT:GOTO 60 ‘\/

The DIM statement is also used to dimension arrays for string data. Strings
stored in an array are, like numeric values, referenced according to their
position in the array by subscript.

1@ DIM MM$(15)
20 DATA JONES, SMITH, BROWN,SIMPSON, PETERS

3@ DATA HENRY, WATSON, MARTIN, SANDBURG, WATERS, FRANK
40 DATA ROSE, DAVIDSON, CHURCH,FORD

5@ FOR I=1 TO 15

60 READ NM$(I)

70 NEXT

80 PRINT:PRINT"STUDENT NUMBER"

99 INPUT S

18@ IF S<1 OR S>15 THEN 99

110 PRINT"NAME: ";NM$(S)

120 GOTO 80

NOTES

For more information on arrays and their dimensions, see the discussion
on arrays in chapter 2 (page 2-28).

10-21

END

END

The END statement marks the final line of a program. The use of END is
optional if the highest numbered line in a program is also the last executable
statement. This allows subroutines to be placed on lines with higher numbers
than the last executable line in the main program logic. It has the form

END

The END statement is used in indirect mode only; it has no function in direct
mode operation.

When BASIC encounters an END statement within a program, it halts program
execution and responds "OK". The program variable status is not affected
by program termination with END, that is, the variables are not reset to
Zero.

EXAMPLE

18 INPUT A
20 GOSUB 100
38 PRINT A
48 END

1989 A=A%30/5
1180 RETURN

10-22

F

EXP

EXP

EXP is an arithmetic function that computes the anti-logarithm to the base
e (2.71828) of the argument. It has the form

where:

EXAMPLES

EXP(n)

is a numeric constant, variable, or expression that indicates
the exponentiation to be performed. It specifies the power
to which e (2.71828) is to be raised to produce a value.

To obtain the value of V raised to the Xth power, you could
use the statement

V = 2.718284 X

However, it is simpler and more RAM-conscious to use the
EXP function:

V = EXP(X)

The following two programs perform the same function, computing V (as above),
given the value of X. 1In the first example, the exponentiation value is
entered from the keyboard. 1In the second example, DATA statements are

used to input the values.

NOTES

18 FOR I=1 TO 5

20 INPUT"EXPONENT" ;X
30 PRINT X;EXP(X):PRINT

40 NEXT

18 FOR I=1 TO 5

20 READ X

30 PRINT X; EXP(X)
40 NEXT

58 DATA -1,0,1

68 DATA 10,20

To solve for X, given a value of V, use the LOG function.

10-23

FIRE

FIRE

FIRE is an arithmetic function that rcturns the status of the fire button
on either the left or right centertainment controller, as specified by the
argument. It has the form

FIRE(n)

where:

n is either O or 1. FIRE(O) checks the status of the fire
button on the left controller. FIRE(1) checks the fire
button on the right controller. For both controllers, FIRE
returns a value of O is the fire button is depressed, and
a value of 1 if it is not.

Because the FIRE function by nature requires a test, it is used within
IF conditional testing statements.

EXAMPLES

10 IF FIRE(®)=8 THEN PRINT"LEFT PRESSED"
20 IF FIREC1)=0 THEN PRINT "RIGHT PRESSED"
38 GOTO 10

In the following example, if the fire button on the left controller is
depressed, a colored rectangle appears on the screen in a random (x,y)
position. This example was written in Microsoft 8K BASIC. To run a similar
program using Level II BASIC, change line 120 to read: 120 PLOT X,Y,2

5 CLS

19 IF FIRE(B)=B THEN GOSUB 188:GOTO 10
28 GOTO 10

108 X=RND(9)*110

1180 Y=RND(1)%74

128 PLOT X,VvY,2,5,3

138 FOR Q=1 TO 30:NEXT

148 RETURN

NOTES
A more detailed example of using the FIRE button to control a game program,

see chapter 5. FIRE is also used in the example program in the JOY entry
in this scction.

10-24

FOR

FOR

The FOR statement establishes a program looping sequence in which statements
on line numbers between the originating FOR and ending NEXT statements

are executed as many times as indicated in the FOR statement. It has the
form

FOR a = expl TO exp2 [STEP exp3]
where:

a is the iteration variable, which control the number of
times the statements in the FOR...NEXT loop are executed.
Its starting value is equal to expl, and its maximum value
is equal to exp2. 'a' is incremented by 1 each time the
end of the loop is reached, unless the optional STEP exp3
option is used to specify alternate incrementation. If
the STEP option is included, 'a' is incremented by the
value of exp3 at the end of each loop iteration.

expl is the starting value of the iteration variable. expl
may be a numeric constant, variable, or expression.

exp? is the maximum value to which the iteration variable can
be incremented. At the end of each loop iteration, signalled
by the NEXT statement, the value of the iteration variable
is incremented by the STEP size and compared against exp2.
If the incremented value of 'a' is less than or equal to
exp2, all statements within the loop are executed again.
If the incremented value of 'a' is greater than exp2, looping
ends, and the statement immediately following the NEXT
statement is executed. (Note that if a negative STEP value
is used, the reverse occurs—--looping ends if the incremented
variable is less than exp2.) exp2 may be a numeric constant,
variable, or expression.

exp3 is an optiona value that specifies non-default incrementation
of the iteration (looping) variable. If exp3 is used,
it must be preceded by the STEP keyword. STEP exp3 causes
the iteration variable to be incremented by the value of
exp3 cach time the loop is executed, rather than the default,
STEP 1. exp3 may be a positive or negative numeric constant,
variable, or expression. If a negative STEP value is used,
the program decrements the value of the iteration variable
ecach time the loop is executed. 1In this case, expl must
be greater than exp?2.

EXAMPLES

In its simplest form, the FOR...NEXT loop performs a single opecration a
specified number of times.

10-25

FOR

FOR —— EXAMPLES

18 FOR J=1 TO 5
28 PRINT “HI"
38 NEXT

In Level II BASIC, FOR...NEXT loops are used to draw lines on the screen.
Note that although this example will work in Microsoft 8K BASIC, lines

10 through 30 would usually be replaced with the single statement

PLOT 1,60,2,117,1

5 CLS

189 FOR X=1 TO 117
20 PLOT X,68,2

38 NEXT

With the STEP option, the FOR...NEXT loop can draw a dotted line:

18 CLS

20 FOR X=1 TO 117 STEP 2
30 PLOT X,60,2

40 NEXT

If you have Microsoft 8K BASIC, change line 30 to read PLOT X,1,2,1,77
to fill your screen with striped lines.

You can use the STEP option with a negative value to draw from right to

left. Note that in this case, the starting value of the iteration variable
is greater than the ending value.

18 CLS

20 FOR X=117 TO 1 STEP -1
380 PLOT X,68,2

48 NEXT

FOR...NEXT loops can be 'mested" or embedded within other FOR...NEXT loops.
Statements can also be executed between the end of a nested loop and the
next iteration of the outer loop, as illustrated below.

1@ CLS

20 FOR X=1 TO 50

39 FOR Y=68 TO 5@ STEP -2
40 PLOT X,VY,2

58 TONE X,Y

60 NEXT Y

70 TONE 100, 100

80 NEXT ¥

10-26

FOR

FOR

NOTES

The value of the iteration variable may be sensed within a loop, but should
not be changed within the loop, or an "?FC ERROR" may result.

Do not GOTO a line within a FOR...NEXT loop, as a "?NF ERROR" will result.

If you want to enter a FOR...NEXT loop from another part of your program,
enter it at the originating FOR statement.

10-27

FRE

FRE

FRE is a numeric function that indicates the number of bytes of RAM still
available for programming and data storage or the amount of unused RAM remaining
for string handling. It is generally used with the PRINT statement during
program development to determine the amount of RAM the program has consumed.

FRE serves no other purpose. It has the form

FRE(x)

where:

b4 can be a numeric constant or variable or a string constant
or variable enclosed in quotes. If 'x' is a numeric constant
or variable, FRE returns the number of bytes of RAM remaining
for program development, less the space allocated for string
handling. If 'x' is a string constant or variable enclosed
in quotes, the number of bytes remaining for string handling
is returned. 'x' is a dummy variable--the value returned
will be the same regardless of whether you specify FRE(O)
or FRE(A), FRE("HELLO") or FRE("A").

EXAMPLE

If you enter the following commands in direct mode immediately after loading
the BASIC interpreter, you should see the following:

?FRE (0)
4698

50

The default of 50 bytes for string handling can be changed with the CLEAR
statement.

CLEAR(500))
?FRE(*'Q")
500

?FRE(6)
4248

10-28

om

GOSUB

GOSUB

The GOSUB statement transfers program logic control to a subroutine beginning
at a specified line number. When the RETURN statement at the end of the
subroutine is encountered, program control returns to the statement immediately
following the initializing GOSUB. It has the form

GOSUB line
where:

line is the line number at which the subroutine begins.

Subroutines called by a GOSUB statement are generally used when you want

to perform an operation of a number of times from different places in the
program code. Setting up a subroutine to perform these types of operations
helps you avoid redundant code that consumes unnecessary RAM. It also
makes program changes simpler. Subroutines must be concluded with a RETURN
statement.

EXAMPLE

18 CLS
20 FOR N=1 TO 199
38 X=RND(1)*%111+1
40 Y=RND(1)#%76+1
58 GOSUB 110
68 NEXT N
78 OUTPUT"HELLO EARTHLINGS", 10,60, 1
80 AS=INSTRS(1)
90 RUN
1880 REM PLOT X,Y IN RANDOM COLOR
118 C=1+RND(1)%3
120 PLOT X,Y,C
138 TONE X,Y
140 RETURN
NOTES

Although you might begin a subroutine with a REM statement, you should
generally GOSUB to the line number at which the statements in the subroutine
actually begin. Then, if space limitations require that you remove REM
statements, you can avoid having to make extensive corrections in the GOSUB
lines of your program to correct program logic.

Other examples of using subroutines appear throughout this section. See

IF, JOY, ON, POT, and RESTORE. Also consult chapter 7, which is devoted
entirely to a discussion of subroutines.

10-29

GOTO

GOTO

The GOTO statement causes program control to be transferred completely to
the first statement on the specified line number. It has the form

GOTO line
where:
line is the line number to which program control transfers.
The first statement on the specified line is executed and
logical execution of subsequent lines continues.
EXAMPLE

The following example illustrates GOTO in its simplest form. This small
program is an infinite loop--execution will continue forever, or until you
type a Control-C to terminate program execution.

180 PRINT" MICRO VIDEO"
20 PRINT
38 GOTO 1@

NOTES

GOTO can be used in direct mode to start program execution at a line other
than the first line in the program. If program execution is started with
a GOTO statement, variables are not initialized to zero as with the RUN
command. You can therefore restart program execution at some point in the
program with variables set as they were by the previous program execution.
This feature can be extremely useful for program debugging. See chapter

2 (page 2-16) for an example of this.

Examples of programs which contain GOTO statements are used extensively
throughout this manual.

10-30

oy

IF

The IF statement is used to determine whether a given condition is true
or false. 1If the test shows that the condition is true, then subsequent
statements on the IF statement line are executed. If the condition tests
false, other statements on the IF statement line are not executed, and

program control

passes to the first statement on the next higher line number.

The IF statement has two forms:

where:

condition

line

statementl,...

EXAMPLES

IF condition GOTO line

IF condition THEN statementl[:statement2:...]

is one or more expressions that provide the basis for a
relational test. You can test for equality, non-equality,
greater than, etc., using the various relational and BOOLEAN
bperators (AND and OR). Operands can be numeric or string
variables, constants, and arithmetic expressions.

is the line number of the program to which program control
will be transferred if the given condition tests true.

are program statements that will be executed sequentially

if the given condition tests to be true. In order for
statements to be executed as a result of the given condition,
the statements must be separated by colons and be placed

on the same line as the conditional IF statement.

The following example illustrates the IF...GOTO construction.

18 CLS

20 OUTPUT"PLAY AGAIN?",20,60, 1
30 A$=INSTRS(1)

40 IF A$="Y" GOTO 100

5@ IF A$="N" GOTO 300

60 GOTO 30

18089 PRINT"I WIN !'*®

118 GOSUB 1000

120 GOTO 1@

308 PRINT"WHATSA MATTER?"
310 PRINT"CHICKEN?"

320 GOSUB 1000

330 GOTO 10

1988 REM -- PAUSE LOOP
1918 FOR Q=1 TO 500

1828 NEXT Q

1830 RETURN

10-31

IF

IF

IF -- EXAMPLE

The next example

tests two numeric expressions with the AND operator and

illustrates the IF...THEN construction of conditional testing.

10
20
309
40
509
60
7a
80

NOTES

CLS

COLOR ©.1,3,7

OUTPUT"HELLO", 40,50, 1

WINDOW 18

INPUT "COLOR";C

IF C>-1 AND C<8 THEN COLOR ©,C,3,7:GOTO 58
PRINT"BAD CHOICE"

GOTO 50

Multiple conditions can be tested with the IF statement. See AND and OR
in this chapter for examples. Other examples illustrating the use of IF
can be found in a variety of other places in this chapter as well. Also,
consult chapter 2 (page 2-20) for an introductory discussion of conditional

relationships.

10-32

INPUT

INPUT

The INPUT statement is used to request user input from the keyboard. An
INPUT statement produces a question mark (?) prompt on the screen and waits
for user input of string or numeric data. To terminate an INPUT statement,
the user must press the carriage return (CR) key to enter the value. INPUT
can be used for entry of either string or numeric data. It has two forms:

INPUT a[,a,.e95a]

INPUT '"'string';a

where:

a is a numeric or string variable name into which the user
input is to be stored for future use. If a numeric variable
is specified, the value entered must be numeric, or the
message '""?7REDO FROM START'" appears, and the INPUT '?' prompt
is repeated. Numeric values can, however, be entered into
a string variable.

"string" is an optional string constant or string variable that
is to be output on the screen on the same line as the '?'
prompt. This allows you to specify what is to be entered
by the user, rather than having the question mark prompt
appear alone, which can be confusing, especially to the
novice user. If '"string'" is included, it must be entered
in quotes and followed by a semi-colon to separate it from
the input variable.

EXAMPLE
5 CLS
18 INPUT “NAME":NM$
28 CLS
380 OUTPUT NM$,10,50,1
49 FOR C=1 TO 7
59 COLOR 0,C,3,7
60 FOR Q=1 TO 100:NEXT
78 NEXT C
80 GOTO S

NOTES

If an INPUT statement requests string data and the string data to be entered
contains an embedded comma (e.g., Ann Arbor, Michigan), the string entered

in response to the INPUT query should be placed in quotation marks. Otherwise,
BASIC ignores everything to the right of the comma and prints the message
"?7EXTRA IGNORED'".

See chapters 2 and 4 for further discussion and examples of data entry
via INPUT statements.

10-33

INSTRS

INSTR$

INSTR$ is a string handling function that accepts user input from the keyboard.
Unlike the INPUT statement, INSTR$ does not require that the user enter

a carriage return to enter the information into memory. It also allows

you to specify the length of the string to be entered. The INSTR$ function
halts the program and waits for user input before executing any subsequent
program statements. The screen remains unchanged when the INSTR$ function

is executed--no prompt of any kind automatically appears. This function

has the form

INSTR$(n)
where:

n is an argument that specifies the number of characters the
INSTR$ function is to read from the keyboard before executing
subsequent program lines. 'n' can be a numeric constant,
variable, or expression.

EXAMPLE

In its simplest form, INSTR$ waits for depression of a single key before
continuing program execution.

5 CLS

180 FOR X=1 TO 100
20 PRINT X

380 GOSUB 109

40 NEXT

58 STOP

188 TONE X, 190
110 AS=INSTR®$(1)
120 RETURN

NOTES
As no prompt normally appears on the screen to accompany the INSTR$ function,
we suggest you output a tone or two just before the INSTR$ function is executed

to let the user know that response is expected.

Use of the INSTR$ function to enter data is discussed in several other places
in this manual. 1In particular, see chapters 2 and 4 (pp. 2-17 and 4-4).

10-34

INT

INT

INT is an arithmetic function that returns the largest whole number (integer)
that is less than or equal to the value given in the argument. It has
the form

INT(n)
where:

n is the real number for which is to be "integerized". 'n'
may be a numeric constant, variable, or expression. Function
calls, such as RND, can also act as arguments to the INT
function.

With positive arguments, INT rounds down (truncates) the number to its
integer value. With negative numbers, INT returns the next smallest negative
integer. For example,

2INT(314.5)
314

?INT(-314.5)
-315

EXAMPLE

1@ CLS

28 COLOR @,1,3,7

25 FOR I =1 TO 59

380 R=RND(1)#%3+1

35 C=INT(R)

48 OUTPUT C,S56,12,3
45 PLOT 26,20,C,80,30
58 ouTPUT C,56,12,0
55 NEXT

10-35

JOY

JOYy

JOY is an arithmetic function that reads input from the left or right joystick

lever.

where:

EXAMPLE

It has the form

JOY(n)

can be either O or 1. If 'n' is 0, JOY reads the joystick

on the left entertainment controller. If 'n' is 1, JOY

reads the joystick lever on the right controller. For either
joystick, JOY returns values for the various positions as
shown below:

up
4
NP
LEFT 1 2 RIGHT
9’////’[\\\\ 10
8
DOWN

A value of zero is returned if the joystick lever is not
moved.

The following example lets you draw on the TV screen with 'the left joystick.
You can depress the fire button to move the '"pen'" to a different point on
the screen without drawing a line.

NOTES

18 CLS

28 X=55:v=35

38 PLOT X,Y,1

40 J=JOY(9)

58 IF J=BGOTO39

68 GOSUB28Y

7@ IF FIRE(B®)=1 GOTO 30

80 PLOT X,VY,0

9@ GOTO 49

280 IFJ>=4ANDJ<=6THENY=Y+1
2180 IFJ>=8ANDJI<=10THENY=Y-1
220 IF J=20RJ=60RJ=1BTHENX=X+1
238 IFJ=10RJ=50RJ=9THENX=X-1
240 RETURN

Sec chapter 5 for a detailed example of using joystick input to control

a game program.

10-36

LEFTS

LEFT$

LEFT$ is a string handling function that isolates a specified number of
characters in a string, beginning with the leftmost character in the string.
It has the form

LEFT$(a$,n)
where:

a$ is the string variable name containing the string from
which characters are to be isolated. (a$ could also be
a string constant, but using LEFT$ in that case seems rather
silly.)

n is the number of characters to be isolated from the string,
starting with the leftmost character. 'n' must be greater

than or equal to zero. If the string is shorter than 'n'
characters, all characters in the string are isolated.

Use of the LEFT$ function concept is used within the Troll Hole Adventure,
a machine language program. In that program your commands (LIGHT LAMP,
PICKUP SHOVEL, etc.) are read as only the first three characters. You
can also enter them in that abbreviated form. 1In fact, if you specify
additional characters with the command, they are simply ignored.

You can use this concept within your own BASIC programs to achieve similar
effects. Use a construct such as

C$ = LEFT$(1$,3)

to limit C$ to the first three characters of the command word.

EXAMPLE

18 CLS

20 DATA JONES, SMITH, REYNOLDS, PARKER, FARMER
380 DATAPETERSON, CARTER,WILLIAMS, BLACK,MCNARY
49 FOR I=1 TO 10

58 READ A%

60 B#$= LEFT#(A%,5)

70 PRINT B$

88 PRINT:NEXT

10-37

LEN

LEN

LEN is an arithmetic function that counts the length of a string in characters
(or bytes). It is most commonly used to position information on the screen,
for centering, for example. It has the form

LEN(a$)
where:
a$ is the string for which length in characters is to be returned.
EXAMPLE
18 CLS
20 WINDOW 24
38 ¥=70

48 PRINT:INPUT"NAME" ;A%
58 J=LEN(A$)

55 IF J>17 GOTO 40

60 OUTRUT A%$,56-3%J,Y,1
70 Y= Y-B6

88 GOTO 40

Remember to reset the WINDOW to 77 after running this example.

10-38

i}

o

LET

LET

LET is a statement that defines an arithmetic expression or numeric constant
as equal to a numeric variable or a string expression or constant as equal
to a string variable. The expression is evaluated, and the results stored
in the named variable. It has the form

LET a = exp

or, more commonly,

a = exp
where:
a is the string or numeric variable in which the result
of exp is to be stored.
exp is an expression which, when evaluated, produces a data

value to be stored in the named variable, 'a'. exp can

be a string or numeric constant, variable, or expression.

If exp is an arithmetic expression, the necessary calculations
are performed according to the given syntax, and the result
stored in the named variable.

LET is probably the most commonly and least commonly used of all statements
in BASIC. 1It's most commonly used because it's used to assign the variables
that are the basis of any program. It's least commonly used because the

LET keyword is optional. Although a program will generally contain a number
of assignment statements in which LET is implied, the keyword LET is not
actually included in the statement in most cases. LET was included in

BASIC for compatibility with other BASIC '"dialects'" and is usually omitted
from assignment statements. The following two statements appear identical
to BASIC:

LET A = 12/5.5
A =12/5.5

Since you're likely to run into memory limitations as your programs increase
in size, why use an extra word in your code that's redundant? Save those
extra couple bytes each time you do an assignment by using the shorter

form.

EXAMPLE

18 CLS
28 A=5
386 B= 7

40 C = 12

58 PRINT A+B+C

10-39

LOG

LOG

LOG is an arithmetic function that calculates the logarithm to the base e
(2.71828) of the given argument. Given any value, LOG computes the exponent
to which e must be raised to produce that value. It has the form

LOG(n)
where:
n is the value for which the logarithm is to be calculated.
'n' can be a numeric constant, variable, or expression.
It must be greater than O or an "?FC ERROR" will result.
EXAMPLE

The two programs below both illustrate performing the same operation, that
is, computing the logarithm of a given value. The examples differ in the
mode of data entry. The first example reads three values in from DATA state-
ments within the program. The second example is an infinite loop in which
data values are supplied to the program from the keyboard.

18 FOR I=1 TO 3

20 READ V

38 PRINTU;LOG(V)

48 NEXT

56 DATA 2.71828,10,20

19 INPUT U
20 PRINTU;LOG(V)
38 GOTO 30

NOTES

LOG is the reverse of the EXP function. Other arithmetic functions usable
in BASIC are COS, SIN, TAN, and ATN.

10-40

)

)

LPRINT

LPRINT

The LPRINT statement is an RS232 BASIC instruction that outputs values

to a lineprinter that is attached to the Interact through the Micro Video
RS232 peripheral interface. This statement is available in RS232 BASIC
only. LPRINT has the form

LPRINT a [;a3.«-]
LPRINT a [,a,e«.]
where:
a can be

e a string or numeric constant (e.g., '"MARY" or 3.14159)
e a numeric or string variable (e.g., A or C$)

e a function call (e.g., SQR(A))

e an arithmetic expression (e.g., 3*B or COS(C)/A)

e a string expression (e.g., A$+B$)

More than one variable can be placed on a single LPRINT statement. You

can separate variables with either commas or semi-colons. While commas

are not terribly useful for displaying information on the TV screen with
the PRINT command, due to the limited number of characters per line, they
are more commonly used as a separator with the LPRINT command, to output
data items through the lineprinter in fields 14 characters wide. The semi-
colon separator adds a leading and trailing blank to numeric data values
output; it concatenates string data.

You can use the TAB, POS, and SPC functions in conjunction with the LPRINT
command to produce effective, formatted reports or analyses on your lineprinter.
Printed lines can be up to 80 characters in length.

LPRINT cannot be abbreviated to L? in the way that PRINT can be abbreviated
to 7. You must type the entire keyword.

EXAMPLE

The program on the following page illustrates the use of LPRINT to produce
a formatted, printed report. In this program we have calculated sales
summary information for a three-year period and defined the format of the
report (also shown). This listing and the resultant report (also shown)
were produced with our RS232-equipped Interact, RS232 BASIC, and a COMPRINT
912-S lineprinter.

10-41

LPRINT

LPRINT -- EXAMPLE

19
12
13
14
16
20
40
50
69
79
75
8@
90

REM-LPRINT EXAMPLE

Y8=11.2

Y9=12.5

Y@=42.8

LPRINT TAB(8); "SALES SUMMARY*
LPRINT SPC(4);"1978 1979 1988 1981~"
LPRINT

LPRINT*QTR"

FOR Q=1 TO 4

LPRINT Q;5;Y8;Y9;Y0
Y8=2%Y8:Y9=Y9+4.2:Y0@=Y0-4
NEXT

LPRINT

100 LPRINT “##%% NOT FOR DISTRIBUTION #*%%"
1180 FOR J=1 TO 5:LPRINT:NEXT

5ALES SUMMARY
1978 1979 1980 1981

QTR

1 11.2 12.5 42.8
2 22.4 16.7 38.8
3 44.8 20.9 34.8
4 89.6 25.1 30.8

*%% NOT FOR DISTRIBUTION #%%

10-42

)

[l

MID$

MID$

MID$ is a string handling function that isolates characters from the middle
of a given string. It has the form

MID$(a$,n,m)

where:
a$ is the string variable containing the string from which
characters are to be isolated.
n indicates the position in the string at which character
isolation is to begin, the nth character in the string.
m is the number of characters to be isolated, starting with

the nth character.

MID$ isolates the specified number of characters from the string and stores
them in another string. 1If a string is shorter than the specified starting
character (n), MID$ returns a null string. If the string is shorter than
the number of characters to be isolated, all characters from the starting
character on are returned.

EXAMPLE

18 CLS

20 DIM A®(15)

38 DATA JAMES, SIMON, PAUL, HENRIETTA,MATTHEW, DAVID

40 DﬂfﬁELIZHBETH,LILLIﬂN,PHULINE,MHRIHN,JOHN,STEPHEN,RHLPH
58 DATA MICHAEL,SAM

68 FOR I=1 TO 15

65 READ AS(I)

78 B$=MID$(AS(I),2,4)

98 PRINT B$®

188 NEXT

NOTES

MID$ is one of the functions used in converting string data to its numeric
representation for storage on tape. See chapter 4 and the ASC function
in this chapter for details.

MID$ is also useful when you want to put several strings within a single
string, then isolate the strings individually for output or other processing.
The Perpetual Calendar BASIC program provides an excellent example of using
MID$ for this type of operation.

10-43

NEXT

NEXT

The NEXT statement defines the end of an iteration of a program loop initiated
by a preceding FOR statement. The NEXT statement is required to end any
FOR...NEXT loop. If omitted, a "7?NF ERROR" will result. NEXT has the form

NEXT [a]
where:

a is the iteration variable specified in the originating FOR
statement. NEXT can be used with or without the iteration
variable, but its inclusion makes loop completion and program
logic in complex, nested FOR...NEXT constructions easier
to follow.

EXAMPLE

Following is a very simple example of the NEXT statement. FOR...NEXT loops
are used in examples throughout this manual. For more information about
looping, see the FOR statement in this chapter or the looping discussion

in chapter 2 (page 2-23)

18 FOR J=1 TO 19
20 PRINTJ
380 NEXT

10-44

NOT

NOT

NOT is an arithmetic function that returns the bitwise complement of the
given argument. The bitwise complement is determined by setting each bit
in the byte of the argument to its reverse position. For example, if the
byte in machine code is

its bitwise complement would be

NOT has the form

NOT(n)
where:
n is a numeric constant, variable or expression for which
the bitwise complement is to be returned. 'n' can also

be a function call, e.g., PRINT NOT(SQR(81)).

The bitwise complement of a number is always the negative of that number,
minus 1. For example, the bitwise complement of 9 is -10; of 456 is -457;
of =34 is 33; etc.

EXAMPLE

5 CLS

18 FOR I=1 TO 18

28 INPUT “NUMBER":A
380 PRINTNOT(A)

40 PRINT

580 NEXT

In the following example, NOT is used as a logical operator in the sense

that the term is used in symbolic logic notation: A OR B = NOT(A AND B).

19 CLS
28 INPUT "NUMBER":A
380 IF NOT(A>18) THEN PRINT"NOT MORE THAN 18" :PRINT:GOTO 2@

40 PRINT"MORE THAN 10*
580 GOTO 29

10-45

ON

ON

ON is a multiple branching statement that transfers program control to a
line number specified in a list of line numbers within the statement, based

on the value of

where:

linel...linen

the ON variable. ON has two forms:

ON a GOTO linel,line2,...,linen

ON a GOSUB linel, line2,...,linen

is a numeric variable, the value of which determines the
line number in the list following GOTO or GOSUB to which
program control is passed. 'a' should have a value of 1
through n, where 'n' is the number of line numbers in the
GOTO or GOSUB list. 'a' must have a positive valuej; if

'a' is negative, an "?FC ERROR" results. If 'a' is zero

or greater than the number of line numbers in the list,

no transfer of program control to a line in the list occurs.
Program execution continues with the next higher numbered
program line in that casec.

is the list of line numbers following the GOTO or GOSUB
statement. Program control transfers to one of the line

numbers on the list, based on the value of "a'. With the

GOSUB construction, the subroutine beginning on the a-th

line in the list is execcuted, then program control is returned
to the first statement on the program line immediately following
the ON line. With GOTO, complete control passes to the

specifed program line, and no return occurs unless specified

by a later GOTO.

ON is frequently used in programs that use the "menu sclection'" technique
to determine what part of the program is executed next. It is functionally
equivalent to using a series of IF statements, but ON provides an easier
and more space—efficient means of testing for transfer of program control.

For example,

IF J 1 GOTO 120
IF J 2 GOTO 360
IF J = 3 GOTO 80
IF J = 4 GOTO 790

It

could be replaced with

ON J GOTO 120,360,80,790

10-46

ON - EXAMPLE

EXAMPLE

18 CLS

20 INPUT T

38 ON J GOTO 1@@, 208,380

49 PRINT"BAD NUMBER":GOTO 1@
108 PRINT"AT LINE 188°:GOTO 1@
2080 PRINT"AT LINE 26008":60T010
38080 PRINT"AT LINE 388" :GOTO 10

NOTES

The ON construction can only be used with a numeric variable. If you want
to allow menu selection by letter rather than number, use the VAL statement
to convert the letter depressed into numeric representation, then test

the value with the ON statement.

10-47

ON

OR

OR is a relational (BOOLEAN) operator that performs a logical, bitwise ORing
operation on two or more relations. Generally used in conjunction with

IF statements, OR test the given conditions to see if one of them satisfies
the condition before performing the subsequent part of the IF statement.

The result of any ORing operation is always '"true'" or '"false'". One of the
conditions tested with OR must be true for the subsequent part of the IF
statement to be performed.

EXAMPLE
18 CLS
20 OUTPUT"DEPRESS*, 30,60, 3
3@ OUTPUT"LEFT OR RIGHT®",1@,50@,3
40 OUTPUT"FIRE BUTTON", 15, 49,3
5@ OUTPUT"TO START",25,30,3
60 IF FIRE(@)=0 OR FIRE(1)=8 GOTO 100
70 GOTO020
188 CLS
11@ PLOTS®,6@,1,8,6
120 FORY=1 TO 6@ STEP2
1380 PLOTS4,Y,3
135 FOR Q = 1 TO 28:NEXTQ
148 PLOTS4,Y,0
158 TONE 54,Y
160 IFY=52 OR Y=6@ GOTO 300
170 NEXTY
308 FORC=1TO7
31@ PLOTS@,60,C,8,6
320 FOR Q = 1 TO 50
338 NEXTQ
340 NEXT
345 FOR Q = 1 TO 58@:NEXTQ
3580 GOTO 10
NOTES

OR may also be used in IF statements along with the other logical operator,

AND. See the IF and JOY sections for other examples of using OR. Or, consult
chapter 2 (page 2-20) to find out more about using AND and OR to test conditional
relations.

10-48

-

OUTPUT

OUTPUT

The OUTPUT statement lets you display information at a given (x,y) location
on the screen in one of the colors in the current color set. OUTPUT has
the form

OUTPUT exp,X,y,cC
where:

exp is the value to be displayed at the specified (x,y) coordinates.
exp can be a numeric or string constant, variable, or expression.

b4 is the horizontal screen coordinate at which the upper
left corner of exp will be placed. x can be a numeric
constant, variable, or expression.

y is the vertical screen coordinate at which the upper left
corner of exp will be placed. y can be a numeric constant,
variable, or expression.

c references the color in one of the positions of the current
color set. 'c' can be O, 1, 2, or 3 and determines the
color in which exp is displayed.

EXAMPLES

18 CLS

28 COLOR 8,3,1.7

30 OUTPUT*HELLO", 42,6@,1
489 GOTO 1@

18 CLS

28 COLOR 9,3,1,7

25 FOR Y=72 TO 18 STEP -6
38 OUTPUT"HELLO",42,Y,1
480 NEXT VY

58 GOTO 19

NOTES

Never use the RESET-R sequence to terminate program execution in programs

that contain OUTPUT statements. If you hit the RESET button at a time

when the computer is processing an OUTPUT statement, the statement can

be mutilated beyond recognition, causing the program to fail when it tries

to execute that line during a subsequent RUN. Use Control-C to stop execution
instead.

10-49

PEEK

PEEK

The PEEK function lets you examine the contents of specific memory addresses
in the Interact. PEEK returns the contents of the specified byte address
as a value between O and 255. PEEK has the form

PEEK(1loc)
where:

loc is a numeric variable that specifies the location for which
contents are to be returned. loc must be an integer value
within the range of locations that can be examined. This
range will depend on which version of BASIC you are using:

LOW HIGH
Microsoft 8K BASIC
and RS232 BASIC 0 SHaple
Level IT1 BASIC 2049 25127

The values returned by the PEEK function are expressed as decimal numbers.
To determine the equivalent hexadecimal value (2 hex digits), use the table
in chapter 11 (page 11-3),

For a list of addresses that are worthwhile to PEEK and POKE, consult the
table under the POKE command in this chapter.

EXAMPLE

The following RS232 BASIC program display's your computer's system ROM.
The value stored in each location is given in both decimal and hexadecimal
notation. Change all occurrences of LPRINT in the program to PRINT to run
this program under Microsoft 8K BASIC control and display the values on
your TV screen.

By knowing the instruction equivalents and instruction lengths, it is possible

to extend this program to disassemble the ROM into 8080 mnemonics. However,

the entire disassembly process can be easily done with the Micro Video Disassembler,
which does not require as much RAM as BASIC and an extension to this program

would.

10-50

10
20
30
32
50
60
70
80
39
32

REM-DISPLAY SYSTEM ROM
REM-ON LINEPRINTER

REM-IN DEC AND HEX NOTATIGN
DIM H®(2),D(2)

LPRINT

LPRINT"LOC DEC HEX"
FOR L=1 TO 2048

U=PEEK(L)

D(1)=U AND 240

DC1)=D(1)/16

1886 D(2)=V AND 15

118 REM-DO FOR EACH HEXDIGIT IN BYTE
1280 FOR I=1 TO 2

130 IF DC(I)<=3 THEN H$(I)=STR®(D(I))>:GOTO 150
132 RESTORE

134 J=D(I)-9

135 FOR K=1 TO J

136 READ H®(I?

137 NEXT K

138 GOTO 166

150 H$(I)=RIGHTS(H®(I), 1)

1686 NEXT I

1v8 DATA A,B.C,D,E,F

172 AS=HS(1)+HS(2)

180 LPRINT L;TAB(8);VU;TAB(16);A%
182 IF INT(L-/10)%10=L THEN LPRINT
1396 NEXT L

NOTES

PEEK

-
o
O

P OO0 WN -

\Y

DEC

&4
50

40
195
12

243
195

62
56
50

HEX
49
32
az
28
C3
ac
(]%]
F3
C3
04

a8
3E
38
32
%]5]

Not only is Level IT BASIC more restrictive in what locations can be accessed,

an initializing or "enabling'" POKE instruction (POKE 19215,25) must be
m<

executed eacHathe Level II BASIC interpreter is loaded or the RESET-R sequence

is used to restart BASIC,
this POKE instruction results in a

or PEEKs will not be permitted.
""?SN ERROR".

Failure to execute
In Microsoft 8K and RS232

BASIC, PEEK and POKE are automatically enabled when BASIC is initialized.

10-51

PLOT

PLOT

The PLOT statement outputs one or more pixels on the screen, as specified
by the parameters on the statement. PLOT is generally used for production
of graphic images on the screen. The PLOT command has two forms; the form
you can use depends on which version of BASIC you have. If you have Level
IT1 or RS232 BASIC, the form of PLOT is:

PLOT x,y,c

The form above can also be used with Microsoft 8K BASIC. However, in this
new version of BASIC, the PLOT statement has been extended to allow two
additional parameters for faster graphics productions. With 8K BASIC, the
PLOT statement has the form

PLOT x,y,c,xl,yl
where:
X is the horizontal screen plotting coordinate. It specifies
how many pixels from the left edge of the screen plotting
is to start. x can be a numeric constant, variable, or

expression.

y is the vertical screen plotting coordinate. It specifies
how many pixels from the bottom of the screen the plot is

to start. vy can be a numeric constant, variable, or expression.

@ references one of the positions in the color set (0-3) to
determine the color for plotting. The color stored in that
position in the current color set is used for plotting.

x1 is the number of pixels to be output horizontally, starting
at the x-coordinate. In other words, xl is how long you
want the plot to be. The x1 parameter can only be used
in Microsoft 8K BASIC.

yl is the number of pixels to be output vertically, starting
at the y-coordinate. In other words, yl is the height (or
width) you want the plot to be. The yl parameter can only
be used in Microsoft 8K BASIC.

EXAMPLES

The following examples illustrate the use of the PLOT statement for several
types of graphic effects. Some of the examples can be executed with either
Microsoft 8K or Level II BASIC; others require Microsoft 8K BASIC because
they use the extended PLOT parameters. All examples that can be entered

in Level II BASIC can also be entered and RUN with Microsoft 8K BASIC.

10-52

PLOT

The first example draws a single line across the screen. Note that Level
IT BASIC requires three statements to accomplish the samec effect as can
be done with a single statement in Microsoft 8K BASIC. The PLOT is also
much faster in 8K BASIC.

Level 11 BASIC Microsoft 8K BASIC

18 FOR X=1 TO 112
286 PLOT X,60,1
380 MEXT

18 PLOT 1.68.1,112.,1

Our next example combines the SIN function and the PLOT statement to produce
a SIN curve similar to that produced in the Biorhythm program. This program
can be entered and RUN in either version of BASIC.

19 CLS

28 FOR X=1 TO 112

380 Y= 40+15%SIN(X/4)
48 PLOT X,Y,2

50 NEXT

The following program requires Microsoft 8K BASIC. 1t illustrates the
production of a series of 'telescoping' rectangles on the screen in different
colors.

18 CLS

280 X=1:v¥Y=1

38 X¥L=118:YL=75

40 C=1

58 FOR I=1 TO 12

5@ PLOT X,Y,C,XL,YL
70 X=X+3:Y=Y+3

80 XL=XL-6

88 YL=YL-6

188 C=C+1

118 NEXT

120 OUTPUT "BOO!",45,40,3
1380 FOR P=1TO 500:NEXT
148 GOTO 20

Our final example is a more lengthy sample program that illustrates various
effects that can be achieved easily and in relatively little programming
area with Microsoft 8K BASIC.

10-53

PLOT

S REM-DEMO PROGRAM FOR THE
6 REM-MICROSOFT 8K FAST GRAPHICS
7 REM-BASIC BY

8 REM-MICRO VUIDEO CORP.
9 REM-ANN ARBOR, MI

19
20
39
35
40
45
50
69
79
80
S1%]

180

110
120
130
140
150
166
170
180
240
245
250
260
262
270
280
290

CLS

COLOR 0,1,7,3

REM-TWO LARGE SQARES
PLOT 7,7,3,96,66

PLOT 1@, 19,1,90,60
GOSUB 16000

REM-A GRID

FOR Y=10 TO 70 STEP 10
PLOT 10,Y,2,90,1

NEXT

FOR X=10 TO 180 STEP 10
PLOT X,10,2,1,60
NEXT

GOSUB 1800

REM-A TRIANGE

L=1

FOR Y=78 TO 10 STEP
PLOT 14,VY,3,L,1
L=L+1:NEXT

GOSUB 1000
REM-SOME STRIPES
C=0

CLS

FOR Y=5 TO 72
C=C+1

PLOT 1,Y,C,117,1
NEXT

GOSUB 1600

-1

300
310
320
325
326
330
340
350
360
37a
380
390
400
410
420
430
440
500
510
600
610
612
615
620
630
640
650
670
680
690
(g51%)
9399

REM-A STAR IS BORN
CLS:COLOR ©0,4,3,2
FOR C=1 TO 2
XS=59

XL=1

FOR Y=78 TO 30
XS5=X5-1

XL=XL+2

PLOT XS,Y,C,XL,1
NEXT

X5=18

XL=83

FOR Y=68 TO 28 STEP
PLOT XS.Y,C.XL,1
XS5=XS+1

XL=XL-2

NEXT

NEXT

GOSUB 10080
REM-RANDOM COLO SQUARES
CLS

COLCR 4,5,6,7

FOR Q=1 TO 150
Y=G+INT(55%RND(1))
X=5+INT(B8O*%RND(1))
C=1+INT(3*%RNDC(1))
XL=2+INTC15*RNDC1))
YL=1+INTC(15#%#RND(1))
PLOT X,Y,C,XL,YL

NEXT

GOSUB 10860

GOTO 10

-1

18680 REM-A PAUSE LOOP
1919 FOR Q=1 TO 500
18620 NEXT

1938 RETURN

10-54

=

o

POINT

POINT

POINT is an arithmetic function that returns a value of 0, 1, 2, or 3.
This value indicates the position in the color set in which any (x,y) location
on the screen is displayed. POINT has the form

POINT(x,y)

where:

X is the horizontal coordinate of the pixel for which the
color value is to be returned. x can be a numeric constant,
variable, or expression.

y is the vertical screen coordinate of the pixel for which

the color value is to be returned. y can be a numeric
constant, variable, or expression.

POINT can be used to allow movement on the screen up to but not beyond

a certain point by testing for the color of the pixel in a certain screen
position. This can be useful in game programs in which you want to have
a ball bounce off a wall or set up barriers for game pieces to maneuver
around.

EXAMPLE

The following example illustrates how to create a bouncing ball between

two walls. You could create your own Breakthrough-type game using this

and the example shown for the POT function. This program requires Microsoft
8K BASIC.

19 CLS e ——
20 COLOR @,1,3,7

30 PLOT 1,50,1,112,1

49 PLOT 1,49,1,112,1

5@ Y=41:IN=1

60 FOR X=10 TO 110

70 J=POINT(X,Y)

80 IF J<>3@ GOTO 200

99 PLOT X,Y,2 |
188 FOR P=1 TO 1@:NEXT

118 PLOT X,Y.0

128 Y=Y+IN

130 NEXT

148 GOTO SO

208 IN=-IN

210 GOTO 120

10-55

POKE

POKE

The POKE statement allows you to set the contents of specific memory addresses
to specific values to create advanced effects in your programs. The statement
has the form

POKE loc,n
where:
loc is a numeric variable or constant that specifies the location
for which stored contents are to be changed. loc must be
the integer value of the variable or constant.
n is the decimal value to be stored in the specified memory

location. 'n' must be an integer between O and 255; it
may be either a variable or a constant.

You can poke any locations between 16384 (the top of the screen) through
32767 (the highest RAM address in the 16K machine). For a more complete
description of the memory organization in the Interact, refer to the documen-
tation available with the Micro Video MONITOR.

Use POKE statements with caution. If you make an error in logic, typing,

or POKEd values, you can destroy your program. Therefore, always CSAVE

a program containing POKE instructions before executing it. That way, you'll
have a back-up copy in the event that something terrible does happen to

the program when you RUN it.

Level 11 BASIC requires an initial enabling POKE instruction to allow subsequent
POKE statements to be successful. This instruction is

POKE 19215,25

In Microsoft 8K and RS232 BASIC, POKE is enabled when the interpreter loads,
so there is no need to enter this instruction. If you forget to enter it

in Level II BASIC and attempt to POKE a memory location, you'll get a '"'?SN
ERROR'"'.

On the next page is a table of POKE locations, values, and commentary that
you'll find useful in exploring the effects you can achieve by "POKEing
around'". We've given you the POKE addresses for both Microsoft 8K/Level
IT BASIC and RS232 BASIC. In many cases, the addresses are the same for
all BASICs.

10-56

-

o

POKE Location

POKE

Microsoft 8K RS232 Default
or Level II BASIC Comtart S
BASIC ontents escription
19215 same 0 Enables POKE for Level
IT BASIC
24888 24881 32 Controls scrolling direction:
32=up, l=sidewise,
others = diagonal
24559 same 0-255 Clock/counter increments
(variable) each 1/60th of second.
See Digital Clock program
in BASIC Examples Booklet
24529 same variable ASCII code of last character
depressed on keyboard.
See chapter 4.
16384 same bit Color TV screen control.
18943 pattern See chapter 3.
4096 same 8*C2+CO Tape motor control and
color register for colors
CO and C2.
6144 same 8*C3+C1 Color registers for colors
Cl and C3. See chapter 3.
24864 24857 6 Number of pixels per PRINT
scroll.
24545 same none RCHRAD. Address of user-
defined character table.
Format:
Byte O Character height (bits)
0 Character width UL
2 Start of character
images
24558 same none Striped letters = 102
Other values give different
color mixes depending on
color set. See example (10-58)
19474 same none Address for USR function.
19473 See chapter 11.
N/A 25098 93 Baud rate specification
25099 for RS232 interface
N/A 25100 11 Port control--bits, parity,

10-57

length

POKE

N/A 25097 0 Port control-—-no line feed
default, 10 to set on
automatic line feed

24624 24619 none Change sound with keyboard
stroke: l=splatter; 3=honk;
' 4=hiss+honk; 7=typewriter

24626 24621 Change tonal sound with
24627 24622 none keyboard stroke. Analogous
to second parameter of
SOUND command. For sample

run set 24626=8, 24627=1

The POKE locations and parameters above are just our suggestions. Experiment
with POKEing different values into the different locations to see what

the result will be. Again, make sure you CSAVE a copy of any program containing
POKE statements before you execute the program, so you'll be safe in case

you've made an error.

EXAMPLE

The following example program uses a POKE location given in the previous
table to perform scrolling with colorful, striped letters. When RUN, this
program produces a dazzling '"'light show" on your TV screen. You can modify
the program to print your own special message simply by changing the PRINT
statement in line 52.

180 REM-COLOR STRIPES WITH POKES
15 CLS

20 POKE 18215, 25

36 POKE 24558, 182

52 PRINTY MICRO VIDEO®
52 PRIMT

54 fOR Z=1 TO 10

55 COLOR 9,3,1,7

53 GOSUB 188

EG CClLLOR 9,1,7,3

78 GOSUE 189

2 COLCR @,7,3,1

4 GO5UB 190

8 NEXT

92 GOTO 3@

198 TONE E&,18

118 RETURN

10-58

POS

POS

POS is an arithmetic function that returns character position of the last
character printed on the current line using the LPRINT or PRINT statement.
POS has the form

POS(n)
where:

n is a dummy variable that defines the function. The value
returned in the same no matter what variable is included
within the parentheses.

The value returned indicates the position of the last character output
on the line. If a value of O is returned, no space remains on the current
line; any subsequent information will be printed on a new line.

POS is frequently used with the SPC function to produce columnar output

of data on the screen or a lineprinter. It is generally used with PRINT

or LPRINT statements ending in a semi-colon. With POS, you can use multiple
PRINT or LPRINT statements to output information on a single line.

EXAMPLE

Enter and RUN this program to see the effect of the POS function on the
information placement on the screen.

5 CLS

18 DATA .U, RICHARD
280 DATA WILSON. DAVE
3@ DATA DRISCOLL, SUE
4@ DATA WILLIAMS, JOHN
5@ DATA WOLF, THOMAS
68 FOR I=1 TO 5

70 READ L&%,F%

80 PRINT L%;

98 J=PO0OS(H)

95 K=8-J

188 PRINT SPC(K); F$
118 NEXT

NOTES

If you have the Micro Video RS232 peripheral interface and RS232 BASIC,

you may find POS helpful in combination with the LPRINT statement to produce
columnar reports. In general, for output to the screen, the OUTPUT statement
is more convenient and easier to use.

10-59

POT

POT

POT is an arithmetic function that reads the potentiometer (pot knob) on
on either the left or right entertainment controller and returns a value
proportionate to the pot knob setting. POT has the form

Os Lt
POT(n)
= (\? - L-(
where:
n is either O or 1, depending on which controller is to be

read. POT(O) returns the value of the pot knob on the left
controller; POT(1) returns the value of the pot knob on
the right controller.

In reading either controller, the lowest values are obtained when the pot

knob is at the farthest counter-clockwise position. The value increases

as the knob is turned in a clockwise direction. The highest value is obtained
when the pot knob is at the farthest possible clockwise position.

The POT function is used to read within a range of values, not a specific
value, as in game paddle movement.

EXAMPLE

The following simple program lets you examine the POT values on each controller
as you turn the knob.

18 PRINT POT(B);POT(L)
20 GOTO 19

Our next example illustrates how to produce and move a game paddle on the
left side of the screen. You can use this as the basis for paddle movement
in your own BASIC game programs. This example requires Microsoft 8K BASIC.

18 CLS:COLCR @,7.1
2@ PLOT 5,10,1,2,6
39 YY=10

40 GOSUB 500

50 GOTO 40

500 Y=POT(@)

518 Y=Y/2

520 IF Y>71 OR Y=YY THEN RETURN
538 PLOT 5,YY,0,2,6

549 PLOT 5,Y,1,2,6

550 Yvy=Y

560 RETURN

e

10-60

o

NOTES

The value returned by the POT function can vary from computer to computer

-~

and controller to controller. The reading will generally range from 3

to 154 when controllers are plugged in.
in, POT returns a value greater than 200.

10-61

In controllers are not plugged

POT

PRINT

PRINT

PRINT can be used as a program statement or in direct mode to print information
on the TV screen in a scrolling fashion. Scrolling with PRINT takes place
from the bottom-most line on the screen. PRINT has the forms

PRINT a [ja3...3a]
PRINT a [,a,e..,a]
where:

a can be
o a string or numeric constant (e.g., '"MARY" or 3.14159)
0 a numeric or string variable (e.g., A$ or C)
o a function call (e.g., SQR(A))
o an arithmetic expression (e.g., 3*%B or COS(C)*A)

0 a string expression (e.g., A$ + B$)

More than one constant, variable, expression, or function call can be placed
on a single PRINT statement. You can combine items to be printed from
different modes, so long as you do not try to combine data items from different
modes into an expression (such as PRINT A$ + B). The items to be printed
can be separated with either semi-colons or commas. TIf you use the comma

as a separator, the data items are output in fields 14 characters wide.
While this is useful for printing data on a lineprinter with LPRINT, its
utility is somewhat questionable for screen printing, due to the Interact's
17-character length lines. The semi-colon separator is far more frequently
used with PRINT. 1If you separate items with semi-colons, numeric data

are output with both a leading and trailing blank, while string data values
are concatenated. You can use the SPC function or a string of blanks to

add spaces between strings in PRINT statements. For example,

PRINT ''MICRQO';"VIDEQ"
MICROVIDEO
PRINT ''MICRO'";

MICRO VIDEO

Note that if the comma separator is used, string data will wrap around
the edge of the screen, while numeric data will not.

PRINT used alone scrolls a blank line on the screen.

EXAMPLES

Because the PRINT command is so widely used throughout this manual, we
have elected to present only the above simple example to illustrate its

use. See chapter 2 in particular for a relatively lengthy discussion of
the PRINT command's uses.

10-62

READ

READ

The READ statement references data values stored in DATA statements in
a BASIC program and stores them for use in variables identified in the
READ statement. READ has the form

READ a[,b,«..,2]
where:

a is a string or numeric variable name into which a data
value from a READ statement is to be stored. More than
one variable name can be included on the READ list. The
variables must all have different names and must be separated
by commas.

READ is the most convenient and efficient manner of entering large numbers

of data constants into a program for subsequent use. When the READ statement
is used for the first time in a program, it always reads data values from

the first DATA statement in the program. Subsequent access to the data

in the DATA statements is sequential. READ has an internal pointer that
keeps track of which data points in the DATA statements have already been
used. Once data points have been entered as a result of a READ statement,
they are not reused unless the RESTORE statement is used to reset READ's
internal pointer back to the first data item on the first DATA statement.

See RESTORE for more information on this feature of BASIC.

READ statements are frequently placed within FOR...NEXT loops when more
than one data value or set of data points are to be used in a single operation.
This concept is illustrated in the following example.

EXAMPLE 5 REM-"CHARGE" NOTES
10 DATA 168,33.124,45
2@ DATA 97,58,80, 40
30 DATA 97,58,80,250
35 REM-GIVE MY REGARDS NOTES
40 DATA 148, 74
50 DATA 130,140,117,70
60 DATA 110,179,97,150,11%,280,117,235
70 CLS:OUTPUT"CHARGE! ", 35,60, 1
80 C=6:GOSUB 600
99 CLS:C=7
199 OUTPUT"GIVE MY REGARDS", 10,60, 1:GOSUB 600
110 RESTORE
120 GOTO 709
598 REM-SUBROUTINE TO PLAY "C" TONES FROM CURRENT
595 REM-POSITION IN THE ’DATA’ STATEMENTS
600 FOR I=1 TO C
618 READ A,B
620 TONE A,B

NOTES 630 NEXT:RETURN

See DATA and RESTORE in this chapter for more information on this mode
of data entry. Also consult chapter 6.

10-63

REM

REM

With REM (remark) statements, you can document your program internally.
REM is a "do-nothing'" statement that exists only for documentation purposes—-
REM statements are never executed. This statement has the form

REM text
where:

text is a string of up to 72 characters (including the line number
and REM keyword) that documents part of your program, usually
program logic.

REM statements are most often used to document program logic, although you
can use them in any way you wish. They add clarity to the program, but

at the expense of RAM. Because REM statements consume considerable amounts
of your program storage space, we recommend you use them sparingly.

You can transfer program control to a REM line with a GOTO or GOSUB statement,
but we recommend avoiding this. Because they take up large amounts of RAM,

as your programs grow larger you may have to remove REM lines to gain additional
memory. If you GOTO a REM line from another program line, then have to

remove the REM line to conserve space, you will have to retype the line
containing the GOTO or GOSUB statement to correct the program logic.

Never put any other statements on the same line as a REM statement. BASIC

considers everything after the REM keyword to be documentation, and any
statement on the same line will be ignored.

EXAMPLE

Is an example really necded? If you feel you need more information or an
example of a program with REM lines, see chapter 2 (2-19).

10-64

RESTORE

RESTORE

The RESTORE statement resets the READ statement's internal pointer that

keeps track of which data items in the available DATA statements have been
referenced. Data items on DATA statements are not reused within a program
unless the RESTORE statement is given. When RESTORE is executed, the internal
pointer is set back to the first data item in the first DATA statement

in the program. This permits multiple READs through DATA statements in

a program. The RESTORE statement has the form

RESTORE
No variables or other information are used with RESTORE.

With RESTORE and "dummy' READ statements in a program loop, you can position
the internal pointer to any point within any DATA statement in the program.
The following example illustrates this concept.

EXAMPLE
5 REM-"CHARGE" NOTES

19 DATA 168.33.124,45

20 DATA 97,58,80, 40

3¥ DATA 97,58,80,250

35 REM-GIVE MY REGARDS NOTES

48 DATA 148, 74

50 DATA 130,140,117,70

60 DATA 11@,179,97,150,118,280, 117,235
70 CLS:RESTORE

88 OUTPUT"C=CHARGE", 10,60, 1

85 OUTPUT"OR",22.54,2

99 OUTPUT"G=GIVE MY ...°,10,48,1

100 A$=TNSTRS(1)}

1180 IF A$="C" THEN C=6:GOSUB 60@:GOTO 70
120 IF A$<>"G" GOTO 100

130 REM-FLUSH FIRST 6%2=12 TONE PAIRS
140 FOR I=1iTO 12:READ A:NEXT

150 C=7:GOSUB 600

160 GOTO 7@

598 REM-SUBROUTINE TO PLAY "C" TONES FROM CURRENT
595 REM-POSITION IN THE ’ DATA’ STATEMENTS
608 FOR I=1 TO C

618 READ A,B

620 TONE A,B

630 NEXT:RETURN

NOTES

See the DATA and READ entries in this chapter and also chapter 6 for more
information on entering data into programs in this way.

10-65

RETURN

RETURN

RETURN is a statement that is required to terminate a subroutine initiated
with a GOSUB statement. When RESTORE is executed in a program, program

control is returned to the statement following the originating GOSUB statement.

RETURN has the form

RETURN
No other parameters are included with a RETURN statement.

RETURN must be the last statement in each subroutine in order for there

to be successful program execution and return to the calling program logic.
In any program using subroutines, the number of executed RETURN statements
should equal the number of executed GOSUB statements.

EXAMPLE

The following program lets you explore your SOUND chip via a subroutine.
The program produces a series of sounds within the range you specify on
the INPUT statement. Try entering the values 0,5000 at the INPUT prompt
to get an idea of how this program operates.

18 CLS

28 OUTPUT"THE NEW WAVE", 22,60, 1
30 WINDOW 24

35S INPUT"LOW, HIGH";L,H

4B GOSUB 1bOa

45 PRINT:PRINT

58 GOTO 35

399 REM-SUBROUTINE TO QUICKLY GO THROUGH SOUNDS
188 FOR X=L TO H

118 SOUND 3,X

120 NEXT

133 SOUND 7, 4896 !

140 RETURN

NOTES

See RESTORE, GOSUB, INSTR$, JOY and others, as well as chapter 7, which
deals exclusively with subroutines, for more information.

10-66

REWIND

REWIND

REWIND can be used as a direct mode command or program statement to turn
the tape motor on for tape positioning or to play a music tape during program
execution. It has the form

REWIND

No other parameters are given on the REWIND statement.

Once you've issued the REWIND command in direct mode, you can depress any
of the cassette buttons for tape positioning. Depression of the cassette
buttons in conjunction with REWIND have the following effects:

REWIND rewinds tape quickly
F-FWD fast—forward positioning of the tape
READ moves the tape forward slowly. 1If you use the READ cassette

button, you will hear sounds as if a program were loading.
Ignore this sound; no data is being read into your computer
when the READ cassette button is depressed in conjunction
with the REWIND command. Since you can hear the sounds
without overwriting your existing program, this provides

an effective method of accurately positioning the tape

for a subsequent reading or writing operation.

READ + WRITE erases any information stored on the tape. You can use
REWIND in this way to erase old tapes for reuse.

Always use the REWIND command to position the tape before using CSAVE to
store a program on tape. If you rewind the tape completely, be sure to
depress the READ cassette button for a few seconds before terminating the
REWIND command and issuing CSAVE. This ensures that all the '"leader'" tone,
required for proper program loading, is saved along with the program data.

Terminate the REWIND command by pressing any key.
You can also use REWIND to turn on the tape motor for positioning and saving
data on tape from within a program or to play audio cassettes in conjunction

with program display. The former concept is illustrated in the following
example.

10-67

REWIND

EXAMPLE

18 CLS

15 COLOR ©9,3.2.7

20 DIM A(20)

39 FOR Q=1 TO 20

4@ ACQ)=5%SQR(Q)-4.5

50 GOSUB 500

55 CLS

57 OUTPUT*SAVING DATA®,24,50,3

60 CSAUE*A

70 CLS

80 PRINT"DATA SAUED":PRINT

99 END

494 REM

495 REM-POSITION TAPE ROUTINE

496 REM

SP@ CLS:OUTPUT"INSERT DATA TAPE®, 10,60, 1
518 OUTPUT"AND DEPRESS THE", 10,54, 1
520 OUTPUT®’ REWIND’ BUTTON®,1@,48,1
533 OUTPUT"HIT ANY KEY®,1@,24,2
540 OUTPUT*WHEN DONE", 10,18,2

550 REWIND

560 RETURN

10-68

RIGHTS

RIGHT$

RIGHT$ is a string handling function that isolates a specified number of
characters from a string, beginning with the rightmost character in the
string. It has the form

RIGHT$(a$,n)

where:
a$ is the string variable name containing the string from
which characters are to be isolated.
n is the number of characters to be isolated from the string,

starting with the rightmost character. 'n' must be greater
than or equal to zero. If the string is shorter than 'n'
characters, all characters in the string are isolated.

RIGHT$ takes the specified number of characters from the string and uses
them in subsequent program operation.

EXAMPLE

In the following example, a '"City, State'" portion of an address is presumed
to be in the string CS$. Assuming that all addresses are in the U.S. and
have proper Postal Service two-character state abbreviations, the RIGHT$
function effectively isolates the state abbreviation, regardless of the
length of the city name. You might use RIGHT$ in an extension of this
program to isolate the state portion of the data for accumulation and sorting
for a demographic survey, for example.

18 CLS

20 FOR I=1 TO 5

38 READ CS$

480 PRINTRIGHT®$(CS®%,2)
580 PRINT:NEXT

60 DATA"CHICAGO, IL"

78 DATA"ADA, MI"

80 DATA"NEW YORK, NY-*
989 DATA"PITTSBURGH, PA"
1868 DATA"FARGO, ND"

NOTES

See chapter 4 for more information on string handling with RIGHT$ and the
other string functions.

10-69

RND

RND

RND is a numeric function that returns a uniformly distributed random number
between 0.0 and 1.0. RND is the call to the random number generator that

is frequently used for adding elements of chance to game play, production

of random graphics and tones, etc. RND has the form

RND(n)

where:

n is a value that determines how the random number generator
is seeded and accessed. 'n' can be a negative, positive,
or zero value.

If 'n' is a negative number, then a new seed is used for
all subsequent calls to the RND function. If you use the
same negative argument on subsequent calls to RND, the same
series of numbers will be returned.

If 'n' is zero, then the same numbers returned on the previous
call is returned again.

If 'n' is positive, then the '"next" random number in the
series is returned. The value of 'n' in this case does
not affect the series of random numbers that are returned.
The value of positive 1 is commonly used.

EXAMPLE

The following program returns a uniformly distributed set of random integers
having values of 0, 1, 2, and 3. These values could then be used for random
color selection of one of the four colors in the current color set, although
this program does not demonstrate that use.

5 POKE 19215,25

6 J=RND(-PEEK(24553))
190 R=INT(RNDC(1)3%4)

20 PRINT R

38 GOTO 10

Several other examples of using the RND function for random number generation
within programs are presented in chapter 2 (2-35). The game program in
chapter 5 also uses the RND function in developing its random graphic skyline.

NOTES

The Interact's random number generation scheme is actually a pseudo-random
number generator. That is, there is a large series of numbers from which

the function draws. Since these numbers are in series, they can, from time

to time, be repeated. You can generate a more ''random'" starting seed in

the series by using the PEEK function to determine the negative value of

the internal clock and using that as the seed. This will lessen the frequency

10-70

RND

of repetitions in values drawn from the series, although the probability
of repetitions is actually quite low. To set the starting seed for random
number generation with respect to the clock, use the following statement:

J = RND(-PEEK(24559))

The value returned by the function call with a negative argument is generally
not used in other places in the program.

10-71

SGN

SGN

SGN is an arithmetic function that returns a value of -1, 0, or 1, depending
on the sign of the argument. It has the form

SGN(n)
where:

n is a numeric variable or expression for which the algebraic
sign is to be determined. If the result of 'n' is negative,
SGN returns a value of -1. If the result of 'n' is positive,
SGN returns a value of 1. If 'n' is zero, SGN returns a
value of O.

The statement G = SGN(V/F), for example, is equivalent to the longer, three-
statement sequence:

G=0:1IF V/F > O THEN G = 1
IF V/F { O THEN G = -1

EXAMPLE

S PRINT

180 PRINT"ENTER ANY"

20 INPUT "NUMBER";N

38 B=SGN(N)+2

489 ON B GOSUB 160,200, 380

45 GOTO 5

188 PRINT"IT'S NEGATIVE":RETURN
200 PRINT"IT'S ZERO":RETURN

300 PRINT"IT’S POSITIVE®:RETURN

10-72

SIN

SIN

SIN is a trigonometric function that computes the sine of an angle given
in radians. It has the form

SIN(n)
where:
n is an angle, expressed in radians, for which the tangent
is to be computed. 'n' can be a numeric constant, variable,
or expression.
EXAMPLE

Test the use of this function with an angle of O degrees. The sine should
be 0. The sine of 90 degrees is 1.0, while the sine of 45 degrees is .707.

18 PRINT:PRINT*QglE IN DEGREES
20 INPUT §§

30 R=DE/RY.

40 PRINT @SIN(

S0 GOTO Ag

10-73

SOUND

SOUND

The SOUND statement produces various sounds through the TV speaker, according
to the values specified in its two arguments. The SOUND statement has the
somewhat unique capability of letting other commands execute while the sound
specified by the parameters is being produced. The sounds can be turned

off by a SOUND 7,4096 statement within a program or by hitting any key on

the keyboard. SOUND has the form

SOUND n,m
where:
n is a value between O and 7 which may be specified as a constant,
variable, or expression.
m is a value between 1 and 32767. 'm' also may be specified

as a constant, variable, or expression.

While there are literally hundreds of addressable sounds in your Interact,
not all parameter combinations produce sounds. To get you started, here
are some of our favorite sound combinations.

SOUND DESCRIPTION SOUND DESCRIPTION

0,24844 Siren 3,182 PT-109

1,28 Pouring rain 3,258 Tugboat horn

1,8770 Niagara Falls 3,262 Airplane, twin-cycle
2,10 Medium flutter 3,264 -Laser

2ml 2 Intermittent white noise 3,268 Phaser

2,22 Tractor 3,276 B-26 bombers

2,140 Fast clock 3,282 Deep space assault
2,264 High speed steam engine 3,284 Heavy phaser

2,422 High speed motor 3,328 Machine guns

2,600 Helicopter 3,340 Machinery vibration
3,14 Satellite signal 4,40 Low pulse

3,16 Diesel horn 5,392 Locust attack

3,30 Warning alarm 5,398 French ambulance
3,62 Low warning tone 5,422 Outboard motor

3,66 1938 Plymouth--stuck horn 6,170 Telephone

3,80 Factory lunch signal 6,456 Mad organist

3,84 Annoying buzzing sound 6,460 Phaser

3,109 Busy circuit 6,3500 Pulsing drone

10-74

.

SOUND

EXAMPLE

If you'd like to search through all the sounds your Interact can make,

try this little program, the Interactive Noisemaker. This program indexes
through all possible SOUND values under the control of the left joystick.
As the program runs, SOUND values you select by moving the joystick to

the left or right are displayed on the screen and produced through the

TV speaker. Move the joystick to the right to increment the value of the
second SOUND parameter; push it to the right to increase the value of the
first parameter. If you don't move the joystick at all, the last SOUND
selected will play continuously.

5 REM - INTERACTIVE NOISEMAKER
18 CLS:COLOR 7,1,2,4

7@ FOR J =8 T0 7

89 FOR K = @ TO 32767

98 SOUND J,K

1860 PRINT"SOUND";J;SPC(1);K
1186 L = JOoYy(@)i+1

1286 ON L GOTO 110,168, 1506
148 G0OTO0110

158 NEXT K

168 NEXT I

NOTES

You can find out more about the sounds your Interact can make, as well
as musical tones, by consulting the looping section of chapter 2 (2-23)
and the TONE statement in this chapter.

10-75

SPC

SecC

The SPC (space) function is used in PRINT and LPRINT statements to insert
a specified number of blank spaces between printed data items. SPC is analogous
in function to depressing the space bar on a typewriter a specified number

of times while forming a printed line of material. SPC has the form
SPC(n)
where:
n is a numeric value that indicates the number of spaces to

be inserted between other printed values. 'n' must be greater

than or equal to zero and not so’large as to produce a printer
line that is longer than 80 characters or a wrapped screen
line that is longer than 72 characters.

EXAMPLE

The following program and printer listing illustrate the use of the SPC
function to insert a steadily incrementing number of spaces between two
words in printed output. This program listing and hard copy from program
execution were produced on an Interact equipped with an RS232 interface,
RS232 BASIC, and an attached COMPRINT 912-S lineprinter.

18 FOR S=8 TO 20
28 LPRINT "HI";SPC(S); "THERE"

38 NEXT HITHERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE

HI THERE
HI THERE
HI THERE
HI THERE

10-76

)

SQR

SQR

SQR is an arithmetic function that returns the square root of a given argument.
SQR has the form

SQR(n)
where:

n is the value for which the square root is to be computed.
'n' must be greater than or equal to zero, and may be in
the form of a numeric constant, variable, or arithmetic
expression.

EXAMPLE

18 PRINT:PRINT"YOUR NUMBER, "

20 INPUT*PLEASE" ;N

380 IF N<B® THEN PRINT®WILL NOT COMPUTE®:GOTO 19
40 PRINT"SQUARE ROOT IS";SAQR(N)

58 GOTO 10

10-77

STOP

STOP is an indirect mode statement that instructs BASIC to interrupt processing
of program statements and return to direct mode, "OK'" status. It has the
form:

STOP

When a stop is executed, the message "BREAK IN nnnn" prints to identify
the line in which the STOP statement was encountered. Using direct mode
commands you can then examine and change various values in the program.
When your changes are made, you can restart program execution where it
broke ff by issuing the CONT (continue) command.

STOP and CONT are used during the program debugging process at places where

you need to '"get into'" the program and look at the values of variables
to determine logic errors.

EXAMPLE

18 CLS

20 A=3

39 B=4

49 C=AT4-1
580 STOP

60 D=C-(A+B)
70 PRINT D

When you run this program, it will stop in mid-execution with the message

BREAK IN 50
OK

You may then use the PRINT command to display the values of the variables

A, B, C, and D and to see the progress of the computations. Then, when

you type the CONT command, the program picks up where it left off, continues
the computations, and prints the computed result of the variable D.

10-78

o

STRS

STR$

STR$ is a string handling function that returns the value of a numeric
argument in string format. STR$ is thus a function that converts numeric
values into string representations. It is complementary to VAL, which
takes a string value and converts it to numeric representation. STR$ has
the form

STR$(n)
where:
n is the numeric constant, variable, or expression that is
to be converted into the string.
EXAMPLE

In their normal modes, string and numeric data cannot be displayed on the
screen with a single OUTPUT command--that type of mode mixing is not allowed
in BASIC. But what if you have a game in which you keep score, and at

the end of the game you'd like to display the names of the winner and the
loser and their scores. Naturally, you could do this with several OUTPUT
statements, or put the string data and numeric data on separate lines of
the screen. However, the STR$ function provides you with a way to combine
the two data modes for output with a single command. You just convert

the numeric data into string form with the STR$ function. Then, all the
data is of the same mode and can be concatenated on the OUTPUT statement
with the '+' operator, as shown below.

5 CLS
18 S1=49
280 S2=14

38 OUTPUT"DAVE"+STR$(S1)+" CORI"+STR$(S2), 10,60, 1
40 AS=INSTRS(1)

NOTES

See chapter 4 for further information about string handling.

10-79

TAB

TAB

TAB is an arithmetic function that is used with PRINT and LPRINT statements
to position items subsequently printed at a specified printing column or
screen position. It is analogous in function to the TAB key on a typewriter,

except that you specify the printing position as an argument to the function.
TAB has the form

TAB(n)j T
where:

n is a numeric constant, variable, or expression that specifies
the column in which the next information is to be printed.
If 'n' specifies a column that is less than the current
position of the print head or screen cursor, then the TAB
call is ignored. 'n' must between O and 80 in value, so
as not to exceed the 80 character column width allowed.

1,
P2 o

The TAB function is usually inserted in the PRINT list and separated from
adjacent items with semi-colons ().

EXAMPLE

The following program listing and lineprinter output show how a variable
can be graphed on a lineprinter using RS232 BASIC and the Micro Video interface.

13 FOR X=8 TO 6.28 STEP .4
20 S5=15 + 1Z%SIN(X)
25 LPRINT "I";TAB(S); "%"

1 *
30 NEXT I *
I *
I *
I *
I *
I *
H *
I *
1 *
T *
I #
1 %
T *
T *
1 *

10-80

TAN

TAN

TAN is a trigonometric function that computes the tangent of an angle,
given in radians. TAN has the form

TAN(n)
where:
n is an angle, expressed in radians, for which the tangent
is to be computed. 'n' can be a numeric constant, variable,
Oor expression.
EXAMPLE

In this short program, you are asked to supply the size of an angle in
degrees. The program converts that value into number of radians, then
computes the tangent. Test the use of this function by entering an angle
of 45 degrees. The tangent should be 1.0. The tangent of O degrces is
zero. The tangent of 135 degrees is -1.0.

0]

PRINT:PRINT"ANGLE IN DEGREES”
20 INPUT DE

30 R=DE/57.2958

40 PRINT TAN(R)

50 GOTO 1@

10-81

TONE

TONE

The TONE statement produces a musical tone through the TV speaker. The
frequency and duration of the tone are determined by the values of the two
parameters included with the TONE statement. TONE has the form

TONE fi,d
where:
fi is an integer expression, the value of which is inversely
proportional to the frequency of the tone. That is, the
smaller the value of fi, the higher the pitch of the resulting
tone.
d is an integer expression, the value of which is proportional

to the tone. The larger the value of d, the longer the
resulting tone. Large or negative values of d should be
avoided, as they produce extremely long-lasting tones.

TONE statements can be used to:
o Play simple melodic tunes.
o Complement visual activity in screen display, such as falling objects,

with rapid tonal sequences.

Musical sequences can be produced by combining a series of TONE statements
that draw from the following list to determine the first TONE parameter.

NOTE 1ST TONE PARAMETER NOTE 1ST TONE PARAMETER
LOW G 224 MIDDLE G 110
ot 212 ct 104
A 200 A 97
a¥ 189 At 91
B 179 B 85
c 168 c 80
c# 158 ct 75
D 148 D 71
D# 139 ¥ 67
E 131 E 63
F 124 F 59
F 117 F# 55
HIGH G 51

10-82

e

TONE

For example, to play the C-E-G-C note sequence, RUN the following program:

18 REM C-E-G-C TONAL SEQUENCE
20 TONE 168, 150

38 TONE 131,192

48 TONE 110,229

58 TONE 8@, 315

The values of the second parameters in each TONE statement were chosen

so that the notes had equal duration. To explore the length of tones further,
RUN the next sample program. 1In this program, the notes stay the same,

but the duration of each note becomes shorter as the value of the second
parameter gets smaller.

3080 PRINT"LONG TONE"

318 TONE 200, 188

320 PRINT"MEDIUM TONE"
330 TONE 200,50

348 PRINT*SHORT TONE®"
350 TONE 209, 10

368 PRINT"SHORTEST TONE*®
370 TONE 204. 1

389 GOTO 300

In order for a tonal sequence to have each note held an equal length of
time, the product of (fi*d) must be a constant. For example, in the
C-E-G-C note sequence above, you'll note that for each TONE statement the
product of the two parameters equals approximately 25,200. To double the
speed of the note sequence, reduce the value of the second parameter by
approximately half by multiplying the second parameter of each tone by

.5. To speed it up still further, to four times as fast, multiply by .25.

Of course, individual melodies will not have constant tone durations--they'll

contain quarter, half, and eighth notes. The durations of the second TONE

parameters are multiplied to achieve the correct rhythm of the music.

Here's a familiar favorite which illustrates this concept. You could combine
this musical sequence in a program with appropriate graphics and messages

and use it for family celebrations. RUN this program to hear the melody:

10-83

TONE 1899 REM-A MELODY USED AT LEAST ONCE A YEAR
1970 GOSUB: 3000
1975 TONE'. 124, 124
1976 TONE '131,200
1998 GOSUB 3008
20889 FOR N=1 .TO 15
2818 READ A, B
2028 TONE A, B
2038 NEXT -
2040 END
2050 DATA 11@,11@, 124,200
2060 DATA 168,84, 168,84
2079 DATA 8@, 1609,97,200
2080 DATA 124,15@,131,131
2090 DATA 148, 148,91,91
2082 DATA 91,91,97,97
2180 DATA 124,124,110,110
2280 DATA 124,150
3088 TONE 168,42
3818 TONE 168,42
3020 TONE 148,99
3038 TONE 168,84
3040 RETURN

This next example simulates some rather amazing 'keyboard runs'.
through at high volume on your TV set to get the full effect.

19 REM- UP THE SCALE

20 FOR FI=408 TO 1 STEP -1
380 TONE FI,680/FI

40 NEXT

45 REM-DOWN THE SCALE

58 FOR FI=1 TO 4009

68 TONE FI,800/F1

70 NEXT

And finally, tones can be used to highlight visual motion on the
as shown in the following sample program.

19 CLS:COLOR ©.1,3,7
20 FOR X=1 TO 112:PLOT X, 11,1:NEXT
3@ FOR Y=76 TO 16 STEP -2

32 SOUND 7,4096

48 OUTPUT"%",56,Y,3

45 TONE 100-Y,20

5@ OUTPUT"#*,56,Y,0

6@ NEXT

7@ SOUND 1,514

72 FOR Q=1 TO 38:NEXT

75 SOUND 1,515

76 FOR Q=1 TO 1800:NEXT

80 GOTO 38

10-84

Play it

screen

o

USR

USR

The USR function instructs BASIC to begin executing machine language instructions
that begin at a prespecified address. The machine language instructions

are processed until a '"C9" instruction is encountered. Then, control of
execution is returned to BASIC, to the statement immediately following

the USR call. USR has two forms. The one you will use depends on which

version of BASIC you are using:

J = USR(0) in Microsoft 8K and Level II BASIC

USR in RS232 BASIC

In the function call format in Microsoft 8K or Level II1 BASIC, the value
of the argument and the returned value, stored in J, are unimportant.
Only the USR keyword is required to call a machine language routine from
RS232 BASIC.

The starting address of the machine language routine is set by two POKE
statements that initialize locations 19474 and 19473 with that address.

See chapter 11--Machine Language Integration-—for a more complete discussion
of how to use USR to transfer program control to machine language subroutines.

NOTES

Machine language programming is more difficult than programming with higher
level languages, such as BASIC. The USR function involves programming
techniques for the intermediate to advanced programmer.

To get started with the concepts of combined BASIC and machine language
programming, we suggest the BOMBS AWAY! Programming Tutorial. 1It's an
entertaining game with clever animation that uses machine language subroutines
extensively. The program is heavily documented and provides a good training
ground for those who are interested in learning to combine the two programming
modes.

10-85

VAL

VAL

VAL is a function that returns the numeric equivalent of a number that is

stored in string format. VAL is thus a conversion function complementary
to STR$. It has the form

VAL(s$)

where:

s$ is a string that contains numeric information. If the first
character of the string is not a digit (0-9), a plus or

a minus sign, or a decimal point, then VAL returns a value
of zero for that string.

The VAL function can be useful in accepting data which may include numeric
values or special keywords, such as "HELP'" or "END", from the keyboard.

The keyboard input is always read into a string variable, then converted
to its numeric equivalent if it is not a special keyword. The following
addition quiz program illustrates this concept. It also provides a nice
drill capability for young children.

EXAMPLE

5 REM-ADDITION QUIZ

18 CLS

28 OUTPUT"HOW MUCH IS ?°,26,60,1

30 OUTPUT STR$(R1)+"+"+STR%(R2),30,40,0
35 RI1=INT(9*RND(1))

36 R2=INT(9%RND(1))

40 OUTPUT STR&(R1)+"+"+STR%(R2),30,40,2
SO0 WINDOW 24

55 INPUT S$

58 IF S$<{>"HELP" GOTO 7@

59 PRINT

68 PRINT"IT'S ";R1+R2

65 A$=INSTR$(1)

67 PRINT:PRINT

68 GOTO 39

70 A=VAL(SH)

89 IF A=R1+R2 THEN PRINT"RIGHT!" :PRINTCHR$(7):PRINT: PRINT:GOTG 30
90 PRINT"NO WAY., TRY AGAIN"

95 PRINT"OR TYPE: HELP®

1898 GOTO 5@

10-86

—

WINDOW

WINDOW

The WINDOW statement establishes the number of lines on the lower portion
of the TV screen that will be used for the scrolling result of the PRINT
or LIST statements. WINDOW has the form

WINDOW n
where:

n is the y-coordinate below which scrolling can occur. 'n'
must be a value between 11 and 77.

By default, the WINDOW is set at the top of the screen so that all material
on the screen is scrolled. This is equivalent to the setting obtained

with the statement WINDOW 77. We suggest that you set WINDOW as an integral
multiple of 6 so that partial lines at the window boundary are not 'chopped
off'" at the top. The RESET-R restart sequence automatically sets windowing
back to the default. WINDOW 77.

WINDOW # TEXT LINES IN
VALUE SCROLLING AREA
12 1
18 2
24 3
72 11

The WINDOW statement is useful for:

1. Displaying title lines on the screen and scrolling sub-point information

beneath them.
2. Displaying a question on the top of the screen and having answers
appear at the bottom. Incorrect answers won't cause the question

to be scrolled out of sight (see VAL example).

3. Developing graphics with direct mode statements.

10-87

WINDOW

EXAMPLE

308 CLS

3180 WINDOW 24

326 OUTPUT"THE VALUE OF PI1",10,60,1
338 OUTPUT*TO 4 PLACES 15°,108,54,1
340 INPUT ANS

358 IF ANS=3.1416 GOTO 3809

360 PRINT"NO. TRY AGAIN"

378 GOTO 330

380 CLS:PRINT"RIGHT !*

398 WINDOW 77

400 LIST

10-88

MACHINE LANGUAGE INTEGRATION

When you've become completely acquainted and familiar with how BASIC operates,
you may wish to move to a more advanced type of programming that combines
both BASIC language statements and subroutines written in machine language.
BASIC's USR function lets you transfer program control to the starting
address of a machine language subroutine. The last instruction in a machine
language routine, C9, transfers control back to BASIC--to the statement
immediately following the USR call.

Examples of machine language code you may wish to invoke from your BASIC
programs include:

SOURCE EXAMPLE FOR MORE INFORMATION

ROM Subroutines RPLOT Graphics Guide to ROM Subroutines

Your own code Specialized arith- BOMBS AWAY Programming
metic functions Tutorial

Micro Video MONITOR

Subroutines Vector Graphics Vector Graphics
supplied by Subroutines documentation
others

To transfer control to a machine language routine you must:

1) POKE the starting address of the machine language routine into locations
19474 and 19473.

2) POKE any required calling parameters into specified locations where
it can be read by the machine language routine.

3) Execute one of the following statements, depending on which version
of BASIC you are using:

A = USR(0) Microsoft 8K or Level II BASIC
USR RS232 BASIC

Note that BASIC works with decimal values, while machine language instructions
and addresses are in hexadecimal (base 16). The locations 19474 and 19473

can contain four hexadecimal digits which identify the starting address

of a machine language routine. Since these two bytes must be set in BASIC

to two individual POKE instructions with decimal arguments, you must first
convert the hexadecimal address into two decimal values to be used in the
POKE commands.

For example, let's assume that we have developed a machine language routine
that begins at hex address 5E6B. Becausc machine language reads addresses

in "reverse'" order, a decimal value equal to 5E must be poked into location
19474, and a value equal to 6B must be poked into 19473. By looking at

the following bit patterns for each byte, we can compute the decimal values
for the POKE instructions.

11-1

Hex Value) 5 E 6 B

Bit Values lO 1 01 Il 110]0110|l1011
T qou474 947

Decimal 19474 1 3

Value 94 107

Therefore, the POKE statements required are

POKE 19474 ,94

POKE 19473,107

While a discussion of 8080 machine language programming is beyond the scope
of this manual, we have provided a hexadecimal to decimal conversion chart
on the following page for case in machine language address conversion.

If you want to learn to program in machine language, you will need the Micro
Video MONITOR. The MONITOR documentation contains a number of suggested
references for learning 8080 programming. We've also listed some other
sources for information in this chapter. Consult the Programming Aids section
of the Micro Video Product Catalog to find out what products are available
to help you get started in machine language integration. You'll probably
find that, in addition to the MONITOR, the BOMBS AWAY! Programming Tutorial
and the Guide to ROM Subroutines will be helpful in getting you started

in this more complex type of programming.

11-2

HEXADECIMAL/DECIMAL CONVERSION CHART

(Hex)
(Dec.)

10
16

20
32

30
48

40
64

50
80

60
96

70
112

80
128

90
144

AO
160

BO
176

Cco
192

DO
208

EO
224

FO
240

01
1

11
17

21
33

31
49

41
65

51
81

61
97

71
113

81
129

91
145

Al
161

B1
177

C1
193

D1
209

E1l
225

F1
241

02
2

12
18

22
34

32
50

42
66

52
82

62
98

72
114

82
130

92
146

A2
162

B2
178

Cc2
194

D2
210

E2
226

F2
242

03
3

13
19

23
35

33
51

43
67

53
83

63
99

73
115

83
131

93
147

A3
163

B3
179

C3
195

D3
211

E3
227

F3
243

04
4

14
20

24
36

34
52

44
68

54
84

64
100

74
116

84
132

94
148

A4
164

B4
180

C4
196

D4
212

E4
228

F4
244

05
5

15
21

25
37

35
53

45
69

55
85

65
101

75
117

85
133

95
149

A5
165

B5
181

C5
197

D5
213

E5
229

F5
245

06
6

16
22

26
38

36
54

46
70

56
86

66
102

76
118

86
134

96
150

A6
166

B6
182

Cc6
198

D6
214

E6
230

F6
246

07
7

17
23

27
39

37
55

47
71

57
87

67
103

717
119

87
135

97
151

A7
167

B7
183

c7
199

D7
215

E7
231

F7
247

08
8

18
24

28
40

38
56

48
72

58
88

68
104

78
120

88
136

98
152

A8
168

B8
184

c8
200

D8
216

E8
232

F8
248

09
9

19
25

29
41

39
57

49
73

59
89

69
105

79
121

89
137

99
153

A9
169

B9
185

Cc9
201

D9
217

E9
233

F9
249

0A
10

1A
26

2A
42

3A
58

4A
74

5A
90

6A
106

7A
122

8A
138

9A
154

AA
170

BA
186

CA
202

DA
218

EA
234

FA
250

OB
11

1B
27

2B
43

3B
59

4B
75

5B
91

6B
107

7B
123

8B
139

9B
155

AB
171

BB
187

CB
203

DB
219

EB
235

FB
251

0C
12

1C
28

2C
44

3C
60

4C
76

5C
92

6C
108

7C
124

8C
140

9C
156

AC
172

BC
188

CC
204

DC
220

EC
236

FC
252

oD
13

1D
29

2D
45

3D
61

4D
717

5D
93

6D
109

7D
125

8D
141

9D
157

AD
173

BD
189

CD
205

DD
221

ED
237

FD
253

OE
14

1E
30

2E
46

3E
62

4E
78

S5E
94

6E
110

7E
126

8E
142

9E
158

AE
174

BE
190

CE
206

DE
222

EE
238

FE
254

OF
15

1F
31

2F
47

3F
63

4F
79

S5F
95

6F
111

7F
127

8F
143

9F
159

AF
175

BF
191

CF
207

DF
223

EF
239

FF
255

11-3

APPENDIX A

ERROR MESSAGE HANDLING

During program development or running your BASIC programs, you are likely

to encounter several error messages. Error messages indicate that something
has gone wrong and that corrective action on your part is needed. Error
messages are BASIC's way of telling you it does not understand what you

are telling it to do. You can get an error message because you have not
followed the proper syntax for a statement, you have tried to call a function
with an illegal argument (such as trying to call an arithmetic function

with a string variable), you have forgotten to dimension an array you're
trying to reference with a subscript, and many other conditions. Any error
message you get will have one of two forms:

7XX ERROR
or

7XX ERROR IN YYYYY

where:
XX is one of the error codes defined below.
YYYYY if included, indicates the line number on which the error occurred.

In general, if a line number is given in the error message, you should

start corrective action by examining the line to determine what's wrong.
Unfortunately, the BASIC error messages do not impart much information

about any error. They merely define the code for the program failure.

To help you in learning to understand and deal with errors in your programs,
we've provided further information about the possible causes and suggested
corrective steps for all the BASIC error messages.

7BS ERROR —— Subscript out of range

A subscript value on one of your arrays is either less than
zero or greater than the maximum subscript declared with

the DIM statement or allowed by default (10). Check the
values of the subscripts referenced in the incorrect line.
Your subscript calculation may have been done incorrectly.

Or, you may have dimensioned the array improperly or not
dimensioned it at all. Or, you may have used the wrong number
of dimensions in the subscript reference.

7CN ERROR —-- Can't continue

The CONT (continue) command you just entered in direct mode
cannot be performed. Correct any errors encountered with
previous error messages, then RUN the program again.

7DD ERROR -- Redimensioned array

An array variable name has been defined more than once. You
either have the array variable name appearing in more than

one DIM statement, or you have attempted re-execution of a

DIM statement that has already been performed. The latter
condition can be caused by improper branching back to the begin-
ning of a program. This error will also occur if you put the
initializing DIM statement inside a FOR...NEXT loop. DIM state-—
ments should only be entered once in the flow of a program,

and an array should be dimensioned before the first reference

to the array is made.

?7FC ERROR —- Illegal function call

The value of the argument (calling parameter) for a function
is incorrect. For example, you might get this message if you
try to reference the -5th character in a string. This error
message will also be output if the values used as parameters
in various BASIC statements, such as PLOT, OUTPUT, COLOR, are
inadmissable. For example, if you try to address screen coor-—
dinates that are outside the allowable range. Print and check
the values of all variables referenced in the flagged line.

?7ID ERROR -- Illegal direct

The BASIC command you have just typed cannot be performed in
direct mode. It can only be performed within a program

in a line-numbered statement. Perhaps you forgot to type
the line number when entering the statement. You'll get
this error, for example, if you try to use the DEF statement
to define a function in direct mode.

?7LS ERROR —-- String too long

The string variable just referenced is too long (exceeds the
maximum length of 255 characters). Check to make sure that
a string concatenation operation is not being done within an
infinite loop.

MO ERROR —- Missing operand

The statement is missing an operand. For example, this error
will occur in the statement 30 C = A + where 30 C = A+B was
intended. Check the identified statement for accuracy.

?NF ERROR —— NEXT without FOR

A NEXT statement was encountered for which there was no originating
FOR statement. Check to make sure the associated FOR statement

has not been deleted accidentally or that improper branching

into the inside of the FOR...NEXT loop has not occurred. You'll
also get this error message if the variable specified in the

NEXT statement is not the same as the iteration variable in

the originating FOR statement.

A-2

70D ERROR —- Out of data

70M ERROR

?70S ERROR

70V ERROR

7RG ERROR

7SN ERROR

?ST ERROR

A READ statement is being attempted for which no unused values

in DATA statements are available. Check that the READ statement
is not being done more times than desired and that enough

data has been supplied in the DATA statements. If whole program
looping is being done and you want to restart at the beginning

of the DATA list, a RESTORE statement may have been inadvertantly
bypassed or omitted.

Out of memory

There is insufficient memory in your Interact to contain the
desired program, arrays, or data. If this error occurred
immediately after you loaded BASIC, you may have forgotten

to type the NEW command to clear memory for entry of a new
program. If you did type NEW, you may have to compact your
program by removing REM lines, grouping multiple statements

on single lines, reducing array sizes, using subroutines to
reduce repetitive statements. See Space Saving Hints in chapter
8 for more information on how to compress your program. To
check the amount of available memory, type PRINT FRE(O).

Out of string space

You have attempted to create a string variable which is too
long to be stored in the memory allocated for string storage.
Check to make sure no unnecessary strings are being formed,
increase the available string space with the CLEAR(size) state-
ment, or reuse string variable names where possible. To

check the amount of available string space, type PRINT FRE("A").

Overflow

The result of a calculation was too large to be represented
in BASIC's internal number format. Check the calculations
being performed to ensure that they are being done correctly.

RETURN without a GOSUB

A RETURN statement was encountered before a previous GOSUB
was executed. Check that your program flow is correct and
that a GOTO was not inadvertantly used in place of a GOSUB.

Syntax error

A statement has been improperly formed due to a typing error,
missing parenthesis in an expression, misspelled keyword,
missing part of a statement, invalid parameter on a statement,
etc. Retype the line correctly.

String formula too complex

An expression involving strings or string functions is too
long or too complex. Break the expression into two or more
shorter statements.

A-3

?7TM ERROR —

?7UF ERROR ——

?UL ERROR ——

?/0 ERROR —

Type mismatch

The type of variables within a statement is inconsistent.

You may have made an attempt to store a numeric result into

a string variable or vice versa. Or, you may have omitted

the $ from a string function name. Check that numeric and
string variables are not being improperly mixed in the statement.

Undefined user function

Reference was made to a user-defined function that has not
been defined with the DEF statement. Check for a spelling
error or a missing or unexecuted DEF statemenc.

Undefined line number

The line number referenced in a GOTO, GOSUB, ON, or IF...THEN
statement does not exist. Check to make sure the line does

exist in the program with the LIST command, or check for a

typing error in the line number of the flagged line. The line
may have been deleted accidentally. Or, the line number reference
may not have been changed by a renumbering operation in EZEDIT

if the reference was not the first line reference in a program
line. If this is the case, retype the command in BASIC or

use the EZEDIT SUBSTITUTE command to make the required change(s).

Division by zero

You have attempted either to divide by zero or to raise zero
to a negative power. Check to make sure the calculations used
to form the divisor are correct.

Of course, we can't possibly identify all the conditions that could potentially
cause an error message. However, the information in this Appendix should

make it easier for you to determine why an error occurred in your program

and how to correct it.

APPENDIX B

BASIC RESERVED WORDS

The keywords in the following list are considered to be '"reserved". They

are defined in BASIC as having a special meaning. Never use a BASIC reserved
word as a variable in your programs, or your program will not execute success-—
fully.

ABS FN NOT SGN
AND FOR NULL SIN
ASC FRE ON SOUND
ATN GOSUB OR SPC
CHR$ GOTO OUTPUT SQR
CLEAR IF PEEK STEP
CLOAD INP PLOT STOP
CLS INPUT POKE STR$
COLOR INSTR$ POS TAB
CONT INT POT TAN
COS Joy PRINT THEN
CSAVE LEFT$ READ TO
DATA LEN REM TONE
DEF LET RESTORE USR
DIM LIST RETURN VAL
DUMMY LOG REWIND WAIT
END MID$ RIGHT$ WINDOW
EXP NEW RND LLIST*
FIRE NEXT RUN LPRINT*

and the arithmetic operators:

+y = %, /’>,<s/\) =

Note that not all the keywords listed above are actually used by or

usable in programming with BASIC. For example, the WAIT, INP, and DUMMY
keywords have no function within BASIC. Attempting to use DUMMY, for example,
can cause serious damage to your program execution. However, these words

are still considered '"reserved'" by BASIC and should not be used as variable
names.

* RS232 BASIC reserved words, not applicable to Microsoft 8K or Level II
BASIC.

APPENDIX C

SUGGESTED PROGRAMMING REFERENCES

There are literally dozens of books, manuals, and learning packages designed

to teach you about BASIC. If you need more help than this manual provides,

we suggest you visit your local computer book store and review the selection.

Try to find reference materials that are appropriate to your level of programming
expertise. Also look for those which are directed toward the implementation

of applications that are of interest to you.

Here are several references we think are worthwhile for learning to talk
BASIC to your Interact:

Forsyth, Richard, The BASIC Idea —- An Introduction to Computer Programming.
John Wiley & Sons, New York, 1978. A systemized overview of the BASIC
language with numerous applications and extensions.

Micro Video Corporation, BOMBS AWAY! Programming Tutorial. Ann Arbor,
MI, 1980. An excellent example of combined BASIC and machine language
programming. Well-documented, with exercises for the advanced BASIC
programmer.

Micro Video Corporation, Guide to ROM Subroutines. Ann Arbor, MI, 1980.
Documents more than 18 subroutines in the Interact system ROM that
intermediate to advanced programmers can invoke in BASIC through USR
calls.

Ross, David L., "The Crowd Stopper'", Creative Computing, January, 1981.
A description of visual animation concepts developed and marketed
by Micro Video on the Interact computer.

Texas Instruments, Calculator Analysis for Business and Finance. Dallas,
TX, 1977. An excellent handbook for formulas and methods for solving
business problems that can be implemented in BASIC programs for the
Interact.

Waite and Pardee, BASIC Primer. Howard W. Sams & Co., Indianapolis, IN,
An excellent, light-hearted introduction to BASIC programming for
the beginner. The authors were formerly with Microsoft and the des-
criptions of several features in the book match exactly with Microsoft
8K Fast Graphics BASIC features on your Interact.

o

APPENDIX D

MATHEMATICAL FUNCTIONS

The following functions are outsi
However, you can use the DEF stat
to use these calculations in your

de the range of BASIC's intrinsic functions.
ement and existing built-in functions
programs.

FUNCTION TO DEFINE IN BASIC USING DEF
SECANT FNSEC(X) = 1/C0S(X)
COSECANT FNCSC(X) = 1/SIN(X)
COTANGENT FNCOT(X) = 1/TAN(X)

INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE

HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT
INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC
COTANGENT

A MOD B

FNARCSIN(X) = ATN(X/SQR(-X*X+1))
FNARCCOS(X) = —ATN(X/SQR(-X*X+1)+1.5708
FNARCSEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708

FNARCCSC(X)=ATN(1/SQR(X*X-1))+(SGN(X)-1)
*1.5708

FNARCCOT(X) = ATN(X) + 1.5708

FNSINH(X) = (EXP(X)-EXP(-X))/2
FNCOSH(X) = (EXP(X) + EXP(-X)/2
EXP(-X)/(EXP(X)+EXP(-X)*2+1
FNSECH(X) = 2/(EXP(X)+EXP(-X))

FNTANH(X)

Il

FNCOTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+1
FNARCSINH(X) = LOG(X+SQR(X*X+1))
FNARCCOSH(X) = LOG(X+SQR(X*X-1))
FNARCTANH(X) = LOG((1+X)/(1-X))/2
FNARCSECH(X) = LOG ((SQR(-X*X+1)+1)/X)

FNARCCSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1)/X
FNARCCOTH(X) = LOG((X+1)/(X-1))/2

FNMOD(X) = A-B*INT(A/B)

	2012_10_17_20_47_17
	2012_10_17_20_47_18
	2012_10_17_20_47_19
	2012_10_17_20_47_20
	2012_10_17_20_47_22
	2012_10_17_20_47_23
	2012_10_17_20_47_25
	2012_10_17_20_47_25_000
	2012_10_17_20_47_27
	2012_10_17_20_47_28
	2012_10_17_20_47_30
	2012_10_17_20_47_31
	2012_10_17_20_47_33
	2012_10_17_20_47_34
	2012_10_17_20_47_35
	2012_10_17_20_47_36
	2012_10_17_20_47_38
	2012_10_17_20_47_39
	2012_10_17_20_47_41
	2012_10_17_20_47_42
	2012_10_17_20_47_43
	2012_10_17_20_47_44
	2012_10_17_20_47_46
	2012_10_17_20_47_47
	2012_10_17_20_47_49
	2012_10_17_20_47_50
	2012_10_17_20_47_51
	2012_10_17_20_47_52
	2012_10_17_20_47_54
	2012_10_17_20_47_55
	2012_10_17_20_47_57
	2012_10_17_20_47_58
	2012_10_17_20_47_59
	2012_10_17_20_48_00
	2012_10_17_20_48_02
	2012_10_17_20_48_03
	2012_10_17_20_48_05
	2012_10_17_20_48_06
	2012_10_17_20_48_08
	2012_10_17_20_48_08_000
	2012_10_17_20_48_10
	2012_10_17_20_48_11
	2012_10_17_20_48_13
	2012_10_17_20_48_14
	2012_10_17_20_48_16
	2012_10_17_20_48_17
	2012_10_17_20_48_18
	2012_10_17_20_48_19
	2012_10_17_20_48_21
	2012_10_17_20_48_22
	2012_10_17_20_48_24
	2012_10_17_20_48_25
	2012_10_17_20_48_26
	2012_10_17_20_48_27
	2012_10_17_20_48_29
	2012_10_17_20_48_30
	2012_10_17_20_48_32
	2012_10_17_20_48_33
	2012_10_17_20_48_34
	2012_10_17_20_48_35
	2012_10_17_20_48_37
	2012_10_17_20_48_38
	2012_10_17_20_48_40
	2012_10_17_20_48_41
	2012_10_17_20_48_43
	2012_10_17_20_48_43_000
	2012_10_17_20_48_45
	2012_10_17_20_48_46
	2012_10_17_20_48_48
	2012_10_17_20_48_49
	2012_10_17_20_48_51
	2012_10_17_20_48_51_000
	2012_10_17_20_48_53
	2012_10_17_20_48_54
	2012_10_17_20_48_56
	2012_10_17_20_48_57
	2012_10_17_20_48_59
	2012_10_17_20_49_00
	2012_10_17_20_49_02
	2012_10_17_20_49_03
	2012_10_17_20_49_04
	2012_10_17_20_49_05
	2012_10_17_20_49_07
	2012_10_17_20_49_08
	2012_10_17_20_49_10
	2012_10_17_20_49_11
	2012_10_17_20_49_13
	2012_10_17_20_49_13_000
	2012_10_17_20_49_15
	2012_10_17_20_49_16
	2012_10_17_20_49_18
	2012_10_17_20_49_19
	2012_10_17_20_49_21
	2012_10_17_20_49_22
	2012_10_17_20_49_23
	2012_10_17_20_49_24
	2012_10_17_20_49_26
	2012_10_17_20_49_27
	2012_10_17_20_49_29
	2012_10_17_20_49_30
	2012_10_17_20_49_31
	2012_10_17_20_49_32
	2012_10_17_20_49_34
	2012_10_17_20_49_35
	2012_10_17_20_49_37
	2012_10_17_20_49_38
	2012_10_17_20_49_39
	2012_10_17_20_49_40
	2012_10_17_20_49_42
	2012_10_17_20_49_43
	2012_10_17_20_49_45
	2012_10_17_20_49_46
	2012_10_17_20_49_47
	2012_10_17_20_49_48
	2012_10_17_20_49_50
	2012_10_17_20_49_51
	2012_10_17_20_49_53
	2012_10_17_20_49_54
	2012_10_17_20_49_56
	2012_10_17_20_49_56_000
	2012_10_17_20_49_58
	2012_10_17_20_49_59
	2012_10_17_20_50_01
	2012_10_17_20_50_02
	2012_10_17_20_50_04
	2012_10_17_20_50_05
	2012_10_17_20_50_07
	2012_10_17_20_50_08
	2012_10_17_20_50_09
	2012_10_17_20_50_10
	2012_10_17_20_50_12
	2012_10_17_20_50_13
	2012_10_17_20_50_15
	2012_10_17_20_50_16
	2012_10_17_20_50_18
	2012_10_17_20_50_18_000
	2012_10_17_20_50_20
	2012_10_17_20_50_21
	2012_10_17_20_50_23
	2012_10_17_20_50_24
	2012_10_17_20_50_26
	2012_10_17_20_50_27
	2012_10_17_20_50_28
	2012_10_17_20_50_29
	2012_10_17_20_50_31
	2012_10_17_20_50_32
	2012_10_17_20_50_34
	2012_10_17_20_50_35
	2012_10_17_20_50_36
	2012_10_17_20_50_37
	2012_10_17_20_50_39
	2012_10_17_20_50_40
	2012_10_17_20_50_42
	2012_10_17_20_50_43
	2012_10_17_20_50_45
	2012_10_17_20_50_45_000
	2012_10_17_20_50_47
	2012_10_17_20_50_48
	2012_10_17_20_50_50
	2012_10_17_20_50_51
	2012_10_17_20_50_53
	2012_10_17_20_50_53_000
	2012_10_17_20_50_55
	2012_10_17_20_50_56
	2012_10_17_20_50_58
	2012_10_17_20_50_59
	2012_10_17_20_51_01
	2012_10_17_20_51_02
	2012_10_17_20_51_04
	2012_10_17_20_51_05
	2012_10_17_20_51_06
	2012_10_17_20_51_07
	2012_10_17_20_51_09
	2012_10_17_20_51_10
	2012_10_17_20_51_12
	2012_10_17_20_51_13
	2012_10_17_20_51_15
	2012_10_17_20_51_15_000
	2012_10_17_20_51_17
	2012_10_17_20_51_18
	2012_10_17_20_51_20
	2012_10_17_20_51_21
	2012_10_17_20_51_23
	2012_10_17_20_51_24
	2012_10_17_20_51_25
	2012_10_17_20_51_26
	2012_10_17_20_51_28
	2012_10_17_20_51_29
	2012_10_17_20_51_31
	2012_10_17_20_51_32
	2012_10_17_20_51_33
	2012_10_17_20_51_34
	2012_10_17_20_51_36
	2012_10_17_20_51_37
	2012_10_17_20_51_39
	2012_10_17_20_51_40
	2012_10_17_20_51_42
	2012_10_17_20_51_42_000
	2012_10_17_20_51_44
	2012_10_17_20_51_45
	2012_10_17_20_51_47
	2012_10_17_20_51_48
	2012_10_17_20_51_50
	2012_10_17_20_51_50_000
	2012_10_17_20_51_52
	2012_10_17_20_51_53
	2012_10_17_20_51_55
	2012_10_17_20_51_56
	2012_10_17_20_51_58
	2012_10_17_20_51_59
	2012_10_17_20_52_00
	2012_10_17_20_52_01
	2012_10_17_20_52_03
	2012_10_17_20_52_04
	2012_10_17_20_52_06
	2012_10_17_20_52_07
	2012_10_17_20_52_09
	2012_10_17_20_52_10
	2012_10_17_20_52_11
	2012_10_17_20_52_12
	2012_10_17_20_52_14
	2012_10_17_20_52_15
	2012_10_17_20_52_17
	2012_10_17_20_52_18
	2012_10_17_20_52_20
	2012_10_17_20_52_21
	2012_10_17_20_52_22
	2012_10_17_20_52_23

