
COMPUCOLOR II

PROGRAMMING AND REFERENCE

MANUAL

Copyright (c) 1 97 8 by Compucolor Corporation

999209 Rev . 2

TABLE OF CONTENTS

CHAPTER TITLE

1 . INTRODUCTION

1 . 1 The COMPUCOLOR II . . • • • • • •
1 .2 Initiali zing and Running BASI C .
1.3 Keyboard Layouts . •
1 .4 Using the Manual . . • • • . . .

2. ESSENTIALS FOR SIMPLE PROGRAMMING

3 .

4

2. 1 Variables .
2.2 Numbers . • .
2.3 Arithmetic Operations . • • •

2.3. 1 Priority of Arithme tic Operations .
2.4 The Assignment Statement • . . • • • • .

BEGINNING TO PROGRAM

3 . 1 Sample Program.
3.2 The PRINT Statement
3 . 3 The RUN Command
3.4 Corrections
3.5 The REM Statement
3 . 6 The LIST Commano
3 . 7 The END Statement
3 . 8 The CONT Command
3.9 Multiple Statement Llnes.
3. 1 0 Introduction to Strings.
3. 1 1 The CLEAR Statement
3. 1 2 Immed�ate Mode
3. 1 3 Samples and Examples

MORE STATEMENTS. COMMAND�.

4 . 1 The INPU7 Statement
4.2 The DATA Statement
4.3 The READ Statement
4.4 The RESTORE Statement
4.5 The GOTO Statement.
4 . 6 Relational Operators

AND FEATURES

4.6.1 Relational Operatvrs in Strings
4 . 7 Logical Operators •
4.8 The IF THEN and IF GOTO Statements
4 . 9 The FOR and NEXT Statements

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.
.
.

.

.
.
.
.

PAGE

1
1
2
4

5
5
6
7
8

1 0
1 0
1 1
1 2
12
1 3
1 3
1 4
1 4
1 5
1 6
1 6
1 7

. 1 8
• • 1 9

• 1 9
20

• • • 2 1
• 21

• • • 22
• 23

• • 25
26

5 . FUNCTIONS AND SUBROUTINES

5 . 1 Functions • . . • • . . • . . . • . . . 29
5 . 1 . 1 The Sine and Cosine Functions ;

SIN(x) and COS(x) . • • • . • • . . • . • • . 30
5 . 1 . 2 The Arctangent and Tangent F unctions;

ATN(x) and TAN(x) • • • • • • . • • • . . • 3 1
5 . 1 . 3 The Square Root Func tion; SQR (x) • . . • . • 3 1
5 . 1 . 4 The Exponential and Logarithmic F unctions ;

EXP (x) and LOG(x) . • • . • . • • . . • 32
5 . 1 . 5 The Absolute Value Function ; ABS(x) • . 33
5 . 1 . 6 The Greatest Integer Function ; INT (x) . . . 33
5 . 1 . 7 The Random Number Function ; RND (x) . . . 34
5 . 1 . 8 The Sign Function ; SGN (x) • • • • • • • . . 35
5.1 . 9 The Position Function ; POS(x) • . • . 36

5 . 2 User Defined Functions • • . • • . . • • • . . . 36
5 . 3 BASIC String Functions . • . • • . . . • • . 38
5 . 4 Subroutines . . • • • • . • . . • • . • • 39
5 . 5 The ON GOTO and ON GOSUB Statements • • • 4 1

6 . ARRAYS

6 . 1 Introduction to Arrays • • . . .
6 . 2 Subscripted Variables • • • • •
6 . 3 Subscripted String Variables • •
6 . 4 The Dimension Statement

7 . F URTHER SOPHISTICATION

• 0 42
0 43

0 • 44
44

7 . 1 F ormatting the Printout • • • • • • • 46
7 . 1 . 1 The Tabulator F unction ; TAB(x) . . • 47
7 . 1 . 2 The Space Function; SPC (x) • • • • • • • • • 4 8

1 . 2 Immediate Mode and Debugging • • . . • . • • . • 4 8
7 . 2 . 1 Restrictions o n Immediate Mode • • . . • • • 4 8

7 . 3 Machine Level Interfaces with DISK BASIC . . • • 49
7 . 3 . 1 The WAIT Statement . • • • • . . . • 49
7 . 3 . 2 The OUT Statement • • . • • • • • • • • 5 0
1 . 3 . 3 The Input Function; INP(x) . . • • 5 0
7 . 3 . 4 The Peek Function ; PEEK (x) . . . • • • . • • 50
7 . 3 . 5 The POKE Statement . • • • . 5 0
7 . 3 . 6 The User Call Function; CALL(x) • • 50

7 . 4 String Space Allocation . • • . . • . • 5 1

8 .

g.

1 0 .

DISK F EATURES

8 . 1 Loading and Saving Programs
8 . 1 . 1 Program Chaining
8 . 1 . 2 MENU Programs

8 . 2 Using the File Control System Through BASIC
8 . 2 . 1 Loading and Saving Displays .

8 . 3 Introduction to Random Files . .
8 . 4 The F ILE Statement

8 . 4 . 1 Random File Creation.
8 . 4 . 2 Random File Open
8 . 4 . 3 Random File Close
8 . 4 . 4 Dump File Buffers
8 . 4 . 5 F ile Attributes
8 . 4 . 6 File Error Trapping
8 . 4 . 7 File Error Determination . .

8 . 5 The GET Statement
8 . 6 The PUT Statement . .
8 . 7 Improving File Access .
8 . 8 Storage Requirements . . .

COLOR , GRAPHICS , AND OTHER TERMINAL FEATURES

9 . 1
9 . 2
9 . 3

The PLOT Statement .
Color
Special Characters .

9 . 4 Cursor Controls . .

. .

.

9 . 4 . 1 Visib le Cursor Mode
9 . 4 . 2 Blind Cursor Mode

9 . 5 Vector Graphics
9 . 6 RS-232C Interface . . .

. . .
.
.

. . .
.

. . .
.
.

9 . 7 Using the COMPUCOLOR II as a Terminal
9 . 8 Miscellaneous Escape Code s

THE FILE CONTROL SYSTEM

1 0 . 1 Introduction to FCS.
1 0 . 2 FCS Commands

.

.

.

.

.

.

.

.

. .

. .
.

. .

. .
.

. .
.

. .

.

. .

. .

. .

.

.

5 3 \.___J· . .
. . 5 4
. . 5 5
. . 5 6
. . 57
. . 5 8
. . 5 8
. . 5 8
. . 5 9
. . 5 9
. . 5 9
. . 60
. . 60
. . 6 1
. . 6 1
. . 6 2

6 2
. . 6 3

. 6 4

. 6 4
¥ . 6 6
. . 6 7
. . 6 7

• 6 9
. . 7 1
. . 80
. . 8 1

. 8 2

. 83
. . 83

) APPENDICES

SECTION TITLE PAGE

A. DISK BASIC

A . 1 BASIC Statements . • • • • . • • . • • • . 89
A . 2 BASIC Operators • • • • . • • . • . 93
A . 3 Standard Mathematical Functions • . . • • . 94
A . 4 Standard String Functions • • • • • • • . • 95
A . 5 BASIC Error Codes . • • • • . • 96
A . 6 BASIC Random File Error Codes . • • • • 9 8

B . F C S (F ILE CONTROL SYSTEM)

B . 1 FCS Commands • • • •
B . 2 FCS Error Codes •

. • • 99
1 0 1

C . CRT COMMANDS

C . 1 Control Codes 1 0 3
C . 2 Status Word Format . . . 1 05
C . 3 Escape Codes 1 0 6
C . 4 Baud Rate Selection 1 07
C . 5 Graphic Plot Submodes • 1 0 8
C . 6 Incremental Direction Codes 1 0 8

D . INTERNAL FEATURES

E .

F .

D . 1 Key Memory Locations . • • • • • 1 0 9
D . 2 Port Assignments . • • • • • • • • • 1 0 9
D . 3 Fifty Pin Bus . • • • • • • • . • • • 1 1 1
D . 4 RS-232C Interface • • • • • 1 1 1

ASCII VALUES 1 1 2

COMPUCOLOR CHARACTER SET 1 1 3

G . HARDWARE SPECIFICATIONS

G . 1 80 80 Microprocessor Specifications . .
G . 2 TMS 550 1 Specifications •
G . 3 SMC 5027 Specifications • • • • • •

1 1 4
1 29
1 39

1. INTRODUCTION

1 . 1 The COMPUCOLOR II

The COMPUCOLOR II wi ll gladly in.troduce itself with but the
s lightest he lp from the user . Its brilliant colors and amazing
versatility are easy to get to know. Once plugged in , it is ready to
perform a myriad of tasks , both simple and complex . The user can easily
insert a disk from the COMPUCOLOR library and have at his fingertips an
assortment of games , recipes , financial statements and more . But for
the more adventurous , (and COMPUCOLOR makes it fun to be adventurous!)
COMPUCOLOR II offers the opportunity for the user to write his own
programs . The language of communication for the COMPUCOLOR II is BASI C ,
a popular computer language developed at Dartmouth University t o make
programming easy for everyone .

BASIC is a single user , conversational programming language which
uses simple statements and familiar mathematical notations to perform
operations . BASIC is one of the simplest computer languages to learn ,
and once learned provides the facility found in more advanced techniques
to perform intricate manipulations and express problems efficiently.

Like any other language , BASIC has a prescribed grammar to which
the user must adhere in order to produce statements and commands
intelligible to the computer . The following pages provide a quick but
complete introduction to the BASIC language and the features of the
COMPUCOLOR I I . Careful reading and liberal experimentation with
examples wil l enab le a user to start programming in a short time .
Adopting a leisurely pace with the text will ensure that the new user
will find programming much easier than suspected .

1 . 2 Initializing and Running BASIC

When the COMPUCOLOR II is turned on , the screen display for Model 3
will be:

DISK BASIC 800 1 V . 6 .78 COPYRIGHT (C) BY COMPUCOLOR
MAXIMUM RAM AVAILABLE?
74 73 BYTES F REE
READY

The number of free bytes on Models 4 and 5 will be 1 5665 and 3 20 4 9 ,
respectively . The READY message indicates that the machine is now ready
to accept any BASIC programming statements that the user wishes to
enter . If the user wishes to use a prepared program from one of the
COMPUCOLOR II diskettes , the diskette must be slid into the opening on
the right hand side of the machine , and the door must be closed .
Pushing the AUTO key (the brown key on the upper left of the keyboard)
will result in a list or "MENU" of available programs on the screen . A
choice is indicated by typing in the number of the selected program.

- 1 -

The program will be loaded and the COMPUCOLOR II will proceed with
instructions on how to use the program .

I f , when the machine is powered on, the proper me ssage does not
appear , the user should hold the shift and control keys down while
striking the CPU RESET key . This should produce the correct screen
display , however , there may be a delay of 5 or more seconds before it
appears . On the deluxe or extended keyboards the COMMAND key can be
struck in place of the combined CONTROL SHIFT sequence .

It may often be necessary to reset BASIC after the machine has been
turned · on and a program or two has been run . The first step to
reinitializing BASI C is striking the CPU RESET key . The screen wil l
output :

COMPUCOLOR II CRT MODE V . 6 . 7 8

Then, the ESC and W(BASIC) keys are hit i n sequence . The machine will
print the message :

DISK BASIC 800 1 V . 6 . 7 8 COPYRIGHT (C) BY COMPUCOLOR
MAXIMUM RAM AVAILABLE?

If the user desires no specific amount of memory , then simply striking
the RETURN key wil l bring the READY message to the screen. I f , however ,
a certain amount of memory needs t o b e specified (as i s necessary in
some applications) , the user must type in a number up to 8 1 9 2 , (or 1 6384
if the machine is a Model 4 ; or 327 6 8 for Model 5) subtracting from this
maximum any amount of space to be reserved as not for use by BASIC . The
user then strikes the RETURN key and the machine will return the number
of free bytes and the READY message . The machine is now ready , as when
it is first turned on, to either accept a user ' s program or load a
COMPUCOLOR II program from an inserted diskette . If it is necessary to
leave BASIC by using the CPU RESET key or by entering the File Control
System , BASIC can be re-entered without losing the program in its
workspace by typing ESC and E (BST RST) .

If the machine will not return the proper messages and/or numbers ,
the local dealer should be contacted for assistance .

1 . 3 COMPUCOLOR II Keyboard Layouts

The layouts of the standard , extended , and deluxe keyboards are
shown in the following figures .

-2-

F======�-=-

-- ·-· - -=
=

�-"·
.

, --, �-� � ---

-.-·
.

.

L-------=--- --- --

----·-· ----· ·-· ·

STAKlARD

E:fiAit: UAIE
PAll: LUll

i"!_Lrn INIUT
CHAfl CHAIII

1 e

4 5

r===
c•u

ltfiiT

��;E INIIIIT
LUll

0 +

L--------------------------------�-----------------�

OPTI� 22A

--· =======�==li

OPTION 24A

- 19.063

-- ----- -

··

-

---· --·--- -- -
·--·- ___

_ j

7.688

1 . 4 Using the Manual

BASIC has thirty (30) key word program , editing , and command
statements , eighteen (1 8) mathematical functions , nine (9) string
functions and thirty (30) ·two-letter error messages . These features are
described in detail in the next chapters , thus providing a ready
reference to BASIC ' s capabilities . If the user is unfamiliar with the
BASIC language , then the remaining portion of this manual should be
studied in sequence while having a COMPUCOLOR II available to run the
examples given.

Compucolor Corporation has a number of BASIC programs on the
COMPUCOLOR II diskettes that are available at nominal prices . In
addition , Compucolor will pay for BASIC programs that are provided on
diskettes when properly documented and accepted for release on future
Compucolor diskettes . Enjoy programming in BASIC!

-4-

2 . ESSENTIALS FOR SIMPLE PROGRAMMING

2 . 1 Variables

BASIC uses variab les as a basis for conveying values in programming
statements . The variab le is an algebraic symbol representing a number
which the user assigns to it . A variable is formed in one of three
ways . It can be a let ter alone , a letter followed by a number , or two

·letters . F or example :

Acceptable Variables

A
C2
XY
Q

Unacceptab le Variables

3F - begins with a digit
25 - numeric constant

A variable longer than 2 characters will be accepted by BASIC , but BASIC
will only read the first two characters . Thus , these must be distinct
from any other variab les used in the program. For example , CAT is not a
new variable in a program already using the variab le CANCEL . Words
used as specific commands or statements in BASIC are reserved , and
cannot be used as variable names (e . g . LIST , RUN , READ , etc .) . If such
a word is used , BASIC will not accept it as a variable , and will usually
return an error message . Certain other special purpose variables are
acceptable in BASIC , and will be described in later sections of this
manual .

When the user assigns a value to a variable , it will retain that
value until it is changed by a later statement or calculation in the
program . All numeric variables , until given a value by the user , are
assumed by the computer to have the value 0 . String variables are
initially assumed to be equal to the null string (see Section 3 . 1 0 .)
This assures that later changes or additions will not misinterpret
values.

2 . 2 Numbers

BASIC treats all numbers (real and integer) as decimal numbers ,
that is , it accepts any decimal number and assumes. a decimal point after
an integer . The advantage of treating all numbers as decimal numbers is
that any number or symbol can be used in any mathematical expression
without regard to its type . Numbers used must be in the approximate
range 1o-9• < N <1o+38 •

-5-

In addition to integers and real numbers , a third format for
numbers is recognized and accepted by BASIC . This is the scientific or
"E-type" notation , and in this format a number is expressed as a decimal
number times some power of 1 0 . The form is :

xxEn

where E represents "times 1 0 to the power of" ; thus the number is read ,
11xx times 1 0 to the power of n . " For example :

25 . 8E2 = 25 . 8 * 1 00 = 25 80

Data may be input in any one or all three of these forms . Results of
computations are output as decimals if they are within the range
. 0 1 <n<999 999 ; otherwise , they are output in E format . BASIC handles
seven significant digits in normal operation and prints 6 decimal digits
as illustrated below:

Value Typed In

. 0 1

. 00 9 9
999999
1 000000

Value Output by BASIC

. 0 1
9 . 9E-0 3
999999
1 E+06

BASIC automatically suppresses the printing of leading and trailing
zeroes in integer and decimal numbers , and , as can be seen from the
preceding examples , formats all floating point numbers in the form:

(sign) x . xxxxxE (+ or -) n

where X represents the number carried to six decimal places ; E stands
for "times 1 0 to the power of" ; and n represents the value of the
exponent . For example :

-3 . 470 2 1 E+0 8 is equal to -347 , 0 2 1 , 000
7 . 26 E-0 4 is equal to . 0 0726

Floating point format is used when storing and calculating most numbers .
NOTE : Because memory size limitations prohibit the storage of infinite
binary numbers , some numbers cannot be expressed exactly in BASIC .
Accuracy i s approximately 7 . 1 digits , and errors in the 6th digit can
occur . For example ; . 999998 may be the result of some functions instead
of 1 . Discrepancies of this type are magnified when such a number is
used in mathematical operations .

2 . 3 Arithmetic Operations

BASIC performs addition , subtraction , multiplication, division and
exponentiation . Formulas to be evaluated are represented in a format
similar to standard mathematical notation. The five operators used in
writing most formuias are :

-6-

Symbol Operator Example Meaning

+ X+Y Add Y to X
X-Y Sub tract Y from X

* X*Y Multiply X by Y
I X/ Y Divide X by Y

X"Y Raise X to Yth power

BASIC also permits the use of unary plus
or the + in +X-Y are examples of such usage .
while unary minus is treated as a zero
expression -A+B is processed as 0-A+B.

2 . 3 . 1 Priority o f Arithmetic Operations

and minus . The - in - A+B,
Unary plus is ignored ,
minus the variab l e . The

When more than one operation is to be performed in a single
formula , as is most often the case , certain rules must be observed as to
the precedence of operators . In any given mathematical formula, BASIC
performs the arithmetic operations in the following order of
evaluation :

Parentheses
parentheses
expression

receive top
is evaluated

priority . Any expression within
before an unparenthesized

2 . Exponentiation

3 . Unary minus

4 . Multiplication and division (of equal priority)

5 . Addition and Sub traction (of equal priority)

6 . Logical operators in the order NOT , AND , then OR. (see
Section 4 . 7)

If the rules above do not clearly designate the order of priority , then
the evaluation of the expression proceeds from left to right . The
expression A"B"C is evaluated from left to right as follows :

1 . A"B
2 . (result of step 1) "C

= step 1
= answer

The expression A/ B*C is also evaluated from left to right since
multiplication and division are of equal priority :

1 . A/B
2 . (result o f step 1) *C

-7-

= step 1
= answer

The expression A+B*C"D is evaluated as :

1 . C"D = step 1
2 . (result of step 1) *B = step 2
3 . (result of step 2) +A = answer

Parentheses may be nested , or enclosed by a second set (or more) of
parentheses . In this case , the expression within the innermost
parentheses is evaluated first , and then the next innermost , and so on,
until all have been evaluated . In the following example :

A = 7 * ((B"2+4) I X)

the order of evaluation is :

1 . B"2 = step
2 . (result of step 1) +4 = step 2
3 . (result of step 2) /X = step 3
4 . (result of step 3) *7 = A

Parentheses also prevent any confusion or doubt as to how the expression
is evaluated . F or example:

Both of these formulas are executed in the same way , but the order of
evaluaton in the second is made more clear by the use of parentheses .

Spaces may b e used in a similar manner . Since the BASIC
interpreter ignores spaces (except when enclosed in quotation marks) ,
the two statements :

are identical in meaning and consequence , but spaces in the first
statement provide ease in reading when the line is entered . When such a
statement is subsequently printed by the computer , spaces entered on
input are ignored , and the spacing will appear differently on the
screen .

2 . 4 The Assignment Statement

The user assigns a value to a variab le by the use of the equals (=)
sign . The variable must appear on the left of the statement and its
value on the right . F or example :

A = 2
Q4 = 7 . 5

-8-

The statements 2=A , and 7 . 5=Q4 , al though algebraically equivalent to·
the above examples , are not legal in BASIC , because the machine always
takes the value on the right of the equals sign and assigns it to the
variable on the left of the sign . The number 2 is not an acceptable
variable , and the machine cannot replace its value with that of "A" .
The fundamental difference in meaning and use of the equals sign in
algebra and in BASIC must be clearly understood to avoid confusion . In
algebraic notation , the formula X=X+1 is meaningless . However , in BASIC
(and in most other computer languages) , the equals sign designates
replacement rather than equality . 'Thus , this formula is actually
translated : "add one to the current value of X and store the new result
b ack in the same variable X . " Whatever value has previously been
assigned to X will be combined with the value 1 . An expression such as
A=B+C instructs the computer to add the values of B and C and s tore the
result in a third variable A . The variable A i s not being evaluated in
terms of any previously assigned value , but only in terms of B and C .
Therefore, i f A has been assigned any value prior to its use i n this
statement , the old value is lost ; it is instead replaced by the value
B+C . For example :

X=2

X=X+1 +Y

Assigns the value 2 to the variable X .

Adds 1 to the current value o f X , then adds the
value of Y to the result and assigns that value to
X.

-9-

3 . BEGINNING TO PROGRAM

3 . 1 Sample Program

The lines below form an acceptable BASIC program which the machine
will understand and compute . The numbers at the start of each line are
an essential part of the program. Each statement must have a line
number in order to be executed when the program runs on the machine .
The computer will process each line in ascending numerical order ,
regardless of the order in which it is typed into the machine.

10 A=8
20 B=7
30 C= A+B
40 PRINT C

The line number itself may be any integer from 0 to 65529 , and
lines may be numbered in increments as low as 1 , but it is a good
programming practice to number program statements in increments of 10 or
100 . This leaves adequate room for insertion of statements at a later
time without the necessity of renumbering the entire program. Hitting
the return key at the end of a numbered line automatically enters that
line into the computer and stores it in memory .

3 . 2 The PRINT Statement

Line 40 of the above program is a PRINT statement . This statement
is necessary in order to retrieve the calculation the machine has made .
After line 30 , the computer has solved the problem and assigned the
value 15 to the variable C . Without the PRINT statement , however , it
will simply store that information for future use , and it will not be
visible to the user . The PRINT statement need not always give the value
of a single variable ; it may contain an expression . Therefore , in the
preceding program, the same result would have appeared if the program
had read :

10 A=8
20 B=7
30 PRINT A+B

Other examples of the use of expressions . in PRINT statements are :

10 A=400
20 PRINT A*975

1� R = 5
20 p = 3 . 14 15 9
3 0 PRINT P*R�2

- 10-

The PRINT statement can also be used to print·a message or string
of characters , either alone , or together with the evaluation and
printing of numeric value s . Characters to be printed are enclosed iri
double quotation marks . For example :

gives :

and :

gives :

1 0 PRINT. "CLASSIFIED"
20 PRINT "INFORMATION�

CLASSIFIED
INFORMATION

1 0 A=50
20 PRINT "THE NEXT NUMBER IS" , A

THE NEXT NUMBER IS 50

When a character string is printed , only the characters
quotes appear ; no leading or trailing spaces are added .
trailing spaces can be added within the quotation marks
keyboard space bar ; spaces appear in the printout exactly
typed within the quotation marks .

between the
Leading and

using the
as they are

A convenient shortcut in DISK BASIC is the use of the question mark
(?) in place of the word "PRINT" in any PRINT s tatement . F or example :

1 0 ?A
30 ?"MAGIC"

is equal to
is equal to

1 0 PRINT A
30 PRINT "MAGIC"

When the program is listed by the machine , however , the question mark is
replaced by the word PRINT. (For a more detailed description of the
PRINT statement , see Section 7 . 1)

3 . 3 The RUN Command

Once a program has been properly written and entered into the
computer , the use of the RUN command will cause it to be processed by
the machine and return the result of the program. When the last program
line is typed and entered , the user types RUN and hits RETURN .
Because RUN is a command and not part of the actual program, it needs no
line number . The machine will return the result and the message READY.
The READY message indicates that the machine is prepared to accept
further additions or changes to the program. For example :

- 1 1 -

Program

1 0 R=50
20 T=50
30 PRINT R*T
RUN

/

Machine Response

2500
READY

If the user desires to write a completely new program , the machine
must be cleared of existing data by re-initial izing BASIC . (See 1 . 2 .)

3 . 4 Corrections

Corrections can be easily made while programming . If , while typing
a line , the user makes a mis take , the � can be used to delete the last
character typed . The � moves the cursor back one space at a time , and
it can be struck repeatedly until the error is erased . The line is then
retyped from that point on , or , if the rest of the original line was
correct , the � can be used to restore that portion of the line removed
by the+- .

If the line containing the error is already entered , a correction
is made by retyping the line correctly , using the same line number . The
computer will replace the faulty line with the one most recently typed .

If the user desires to delete an entire line from the program,
entering that line number and hitting RETURN will remove it from the
program. The line currently being entered can be deleted by typing the
ERASE LINE key .

The ERASE PAGE key will clear the entire CRT screen , but it does
not change or disturb any BASIC statements in any way . It is often used
to obtain a blank workspace on the screen while programming .

3 . 5 The REM Statement

It is often desirable to insert notes and messages within a
program. Such data as the name and purpose of the program , how it is
used , how certain parts of the program work , and expec ted results at
various points are useful things to have present in the program for
ready reference by anyone using that program.

The REMARK or REM statement is used to insert remarks or comments
into a program without these comments affecting executio n . Remarks do ,
however , use memory in the user area which may be needed by an
exceptionally long program.

The REM statement must be preceded by a line number . The message
itself can contain any legal character on the keyboard , including some
of the control characters . BASIC completely ignores anything in a line
following the letters REM . Typical REM statements are shown below :

1 0 REM THIS PROGRAM COMPUTES THE
1 5 REM ROOTS OF A QUADRATIC EQUATION

- 12-

3 . 6 The LIST Command

The user can see a listing of his program on the screen by typing
LIST and hitting RETURN. Such a listing makes finding errors much
easier , and facilitates additions and changes to the program. A portion
of any program may be viewed by typing LIST followed by a .line number .
The screen will show a listing of that line and all following lines in
the program. Because the machine will scroll the program very rapidly ,
the user may wish to stop the listing at some point for a closer look .
Hitting the BREAK key will cause the scrolling to hal t . Hitting the
RETURN key will resume the listing. To stop the listing altogether , so
that the user can edit or change the program, the LINEFEED key (�) is
struck . This will produce the message READY .

3.7 The END Statement

The optional END statement is of the form:

END

Upon executing an END statement , program execution is terminated and the
READY message is printed . Program execution can be continued at the
statement immediately following the END statement by entering a CONT
command . For example , executing the following line s :

1 0 PRINT 1 : END : PRINT 2
20 PRINT 3

gives the following response :

RUN
1

READY

CONT
2
3

READY

In this fashion the END statement can be used to generate program b reaks
to facilitate debugging a program.

Program execution will also terminate automatically when the
program runs out of statements . Note that in both oases currently open
files are not closed .

- 1 3-

3 . 8 The CONT Command

The CONT command is of the form :

CONT

This command is used to continue program execution at the next statement
after a program break or error is de tec ted . Execution can be restarted
at a specific line number by using a GOTO statement instead of CONT .

A CN error message is printed if it is impossible to continue
execution after a program break . This message will appear if no program
exists or a new or correc ted line was entered into the program.

3 . 9 Multiple Statement Lines

For convenience in programming , DISK BASIC allows the user to place
more than one statement on a single numbered line . The general form
is :

statement : statement : • • • : statement

where 'statement' is any permissible BASIC s tatement . Any number of
statements may be put toge ther on one line , with the restriction that
line length must not exceed 96 characters . The colon (:) denotes new
statements and separates them from one another. The statements are
executed in order from left to right .

The user must take note of a few statements whose use in mul tiple
statement lines requires some caution .

Because BASIC ignores anything after REM , in the following
statement :

A=50 : B=25 : C:4 : REM THIS PROGRAM ADDS : PRINT A+B+C

the result of A+B+C wil l never be computed and printed .
Because GOTO causes an immediate and unconditional transfer of

control, anything following GOTO in a multiple statement line will never
be executed . DATA statements that appear after GOTO ' s will , however , be
read by any corresponding READ statement s .

Care must be taken when IF • • • THEN statements are used i n multiple
statement lines . If the result of the test is false , control will not
pass to the next statement in the line , but rather to the next numbered
statement . For example :

50 C=2 : A=5 : IF A=6 THEN PRINT 1 : PRINT 2
60 IF C:2 THEN PRINT 3 : PRINT 4

This program wil l print out the ·numbers 3 and 4 . If the IF • • • THEN
statement comparison is true and does not pass control to a specific
line number , the next statement to the right in the multilple statement
line will be executed . For example :

40 A= 10 : IF A= 10 THEN B=500 : PRINT A+B

- 14-

will result in setting B to 500 and the printing of the result of A+B .

3 . 10 Introduction t o Strings

The previous sections described the manipulation of numerical
information only ; however , DISK BASIC also processes information in the
form of character strings . A string , in this context , is a sequence of
characters treated as a uni t . A string is composed of alphabetic ,
numeric , or special characters . The maximum length of quoted s trings
and strings entered using the INPUT statement is determined by the
length of the input line buffer which is 96 characters or bytes .

Any variable name followed by a dollar sign ($) character indicates
a string variable . For example :

A$
C7 $
LONG$

are simple string variables and can be used as follows :

10 A$= "HELL011
20 PRINT A$

Note that the string variable A$ is separate and distinct from the
variable A . I n DISK BASIC , all control charac ters above control code C
(or 3) are legal characters within quotes (") except for the following :

Control Code K or 1 1 or erase line
Control Code L or 12 or erase page
Control Code M or 13 or return/enter
Control Code y or 25 or cursor right
Control Code Z or 26 or cursor left

Concatenation is a string operator that puts one string after
another without any intervening characters. It is specified by a plus
sign (+) and works only with strings. The maximum length of a
concatenated string is 255 characters . In each of the following
examples , D$ contains the result of concatenating the strings A$, B$,
and C$.

10 A$ = "3 3 " 10 A$ = " I AM"
20 B$ = 112211 20 B$ = " A CLEVER"
30 C$ = "44" 30 C$ = n COMPUCOLOR II"
4 0 D $ = A$+B$+C$ 40 D$ = A$+B$+C$
50 PRINT D$ 50 PRINT D$

RUN RUN
3 32244 I AM A CLEVER COMPUCOLOR II

- 1 5-

·---

3 . 1 1 The CLEAR Statement

The CLEAR statement clears all the user' s variab les including
simple variables and arrays . The CLEAR statement has two forms as shown
below :

CLEAR

and

CLEAR expression

The difference between the two forms is that the form with the
expression specifies the new number of bytes in the string space . Upon
entry to BASIC the string space is initialized to 50 bytes . For
example , in programs that heavily use strings , this allocation can be
changed by executing a CLEAR 250 ; it should be one of the first executed
statements in a program because it also clears all the variables . For
further information on how strings are allocated in the string space ,
see Section 7 . 4 .

3 . 1 2 Immediate Mode

It is not necessary to write a complete program to use BASIC . Most
of the statements discussed in this manual can be included in a program
for later execution or given as commands which are immediately executed
by the DISK BASIC interpreter . This latter facility makes BASIC an
extremely powerful cal culator .

BASIC distinguishes between lines entered for later execution and
those entered for immediate execution solely by the presence (or
absence) of line numbers . Statements which begin with line numbers are
stored as part of the program ; statements without line numbers are
executed immediately upon being entered into the system. Thus the
line :

1 0 PRINT "THIS IS A COMPUCOLOR II"

produces no action at the console upon entry , while the statement :

PRINT "THIS IS A COMPUCOLOR II"

causes the immediate output :

THIS IS A COMPUCOLOR II

Mul tiple statements can be used on a single line in immediate mode .
For example :

A= 1 : PRINT A gives :

Program loops are also allowed
squares can be produced as
loops , see Section 4 . 9)

1

in immediate mode ; thus a table of
follows : (For a description of FOR NEXT

- 1 6-

FOR I= 1 TO 1 0: PRINT I , IA2:NEXT I

1
2 4
3 9
4 1 6
5 25
6 36
7 49
8 6 4
9 81
1 0 1 00

READY

3 . 1 3 Samples and Examples

In order to become more adept at programming , any user previously
unfamiliar with BASIC should set aside some time for experimentation
with the information. thus far provided in this manual . Simple programs
such as the ones below make good practice efforts .

A

1 0 REM THIS PROGRAM COMPUTES
20 REM THE AREA OF A CIRCLE
30 REM THE F ORMULA IS:
40 REM AREA = PI • RADIUS A 2
50 PI = 3 . 1 4 1 5 9
6 0 R = 25
70 A = PI • R A 2
80 PRINT n AREA = 11, A

B

1 0 REM THIS PROGRAM AVERAGES
20 REM F IVE NUMBERS
30 A=23
40 B= 1
50 C= 1 88
60 D=5
70 E=89
80 T=A+B+C+D+E
90 AV:T/5
95 PRINT n AVERAGE = n -, AV

Write programs to solve these problems:

A

How many cubic yards of soil can be
into put into a box that measures
5 feet by 42 . 5 inches by 1 yard?

- 1 7 -

B

Convert 40 degrees F ahrenheit
into degrees Celsius using
the formula C = (5/ 9) • (F-32)

4 . MORE STATEMENTS , COMMANDS , AND FEATURES

4 . 1 The INPUT Statement

The INPUT statement is used when data values are to be entered from
the terminal keyboard during program executio n . The form of the
statement is:

INPUT list

where ' list ' is a list of variable names separated by commas . For
example:

1 0 INPUT A , B , C

causes the computer to pause during execution , print a question mark ,
and wait for the entry of three numeric values separated by commas . The
values are input to the computer by typing the RETURN key .

If too few values are entered , BASIC prints another ? to indicate
that more data values are needed . If too many values are used , the
excess data values on that line are ignored , but the program will
continue . The values entered in response to the INPUT statement cannot
be continued on another line and are terminated by the RETURN key.
Values must be separated by commas if more than one value is entered on
the same line .

When reading numeric values , spaces are ignored . When a non-space
is found , it is assumed to be part of a number; if not, then the
question mark is repeated . The number is terminated by a comma , colon ,
or carriage re turn .

When reading string items , leading spaces are ignored . When a
non-space character is found , it is assumed to be the start of a string
item. If this first character is a quotation mark (") , the item is
taken as being a quoted string and all characters between the first
double quote (") and a matching double quote or carriage return are
returned as characters in the string. Thus , quoted strings may contain
any legal character except double quote . If the first non-space
character is not a double quote , then it is assumed to be an unquoted
string constant . The string will terminate with a comma , colon , or
carriage re turn.

When there are several values to be entered via the INPUT
statement , it is helpful to print a message explaining the data needed .
For example:

1 0 PRINT " YOUR AGE IS"
20 INPUT A

The INPUT statement can also contain quoted string s . The above example
could be writ ten:

- 1 8-

1 0 INPUT "YOUR AGE IS?"; A

Note that when a quoted string is included in an INPUT statement , the
normal ? is not printed as a prompt character , and if desired , must be
included as shown within the quotes above .

The INPUT statement allows BASIC to be programmed to accept direct
questions and answers as well as fill-in-the-blank applications .

If the user wishes to atop a program while it is waiting at an
input statement , LINEFEED and RETURN must be typed in sequence . If
RETURN is typed in response to the INPUT prompt (?) , DISK BASIC will
assume the value 0 for numeric variab le s , and "O" for string variab les .
If there are additional variables in the INPUT list , a question mark (?)
will be printed as discussed above .

4 . 2 The DATA Statement

The DATA statement is used in conjunction with the READ statement
to enter data into an executing program. One statement is never used
without the other . The form of the statement is :

DATA value list

where value list contains the numbers or strings to be assigned to the
variables listed in a READ statement . Individual items in the value
list are separated by commas; strings are usually enclosed in quotation
mark s . For example:

1 50 DATA 4 , 7 , 2 , 3 , "ABC"
1 70 DATA 1 , 34 E-3 , 3 , 1 7 1 3 1 1

The scanning of numeric and string items is identical to that
described above in the INPUT statement . An SN error message can result
from an improperly formatted DATA list .

The location of DATA statements is arbitrary as long as they appear
in the correct order; however , it is good practice to collect all
related DATA statements near each other .

When the RUN command is executed , BASIC searches for the first DATA
statement and saves a pointer to its location . Each time a READ
statement is encountered in the program, the next value in the DATA
statement is assigned to the designated variable . If there are no more
values in that DATA statement , BASIC looks for the next DATA statemen t .

4 . 3 The READ Statement

A READ statement is used to assign the values listed in the DATA
statements to the specified variables . The READ statement is of the
form:

READ variable list

The items in the variable list may be simple variab le names or string
variable names and are separated by commas. F or example :

- 1 9-

1 0 READ A , B$, C
20 DATA 1 2 , "42 " , . 1 2E2

Since data must be read before it can be used in a program, READ
statements generally occur near the beginning of the program . A READ
statement can be placed anywhere in a multiple statement line.

If there are no data values available in the DATA statements for
the READ to store , the out of data message below is printed:

OD ERROR IN xxxxx
READY

Items in the data list in excess of those needed by the program ' s
READ statements are ignored.

4 . 4 The RESTORE Statement

The RESTORE statement causes the program to reuse the data from the
first DATA statement , or , if a line number is specified , from the first
DATA statement on or after the specified line. The two forms of the
RESTORE statement are as follows:

RESTORE

and

RESTORE line number

For example:

1 00 RESTORE 50

causes the next READ statement to start reading data from the first DATA
statement on or after line 50 . The following example shows how the
RESTORE statement functions:

1 0 INPUT n ENTER 1 F OR NUMERIC , 2 F OR STRINGS:"; A
20 IF A = 2 THEN 200
1 00 RESTORE 1 90
1 1 0 . FOR I = 1 TO 5 READ B: PRINT B: NEXT I
1 20 GOTO 1 0
1 90 DATA 1 0, 20 , 30 , 40 , 50 , 60
200 RESTORE 290
2 1 0 F OR I = 1 TO 5 READ B$: PRINT B$: NEXT I
220 GOTO 1 0
290 DATA " APPLE" , "BOY" , " CAT" , "DOG" , " ELEPHANT" , "F OX"

If a 2 is entered , the first 5 string data values in line 290 are
printed ; otherwise , the first 5 numeric data values on line 1 90 are
printed . The sixth data items in lines 1 90 and 290 are not read .

-20-

4 . 5 The GOTO Statement

The GOTO statement is used when it is desired to unconditionally
to some line other than the next sequential line in the

In other words , a GOTO statement causes an immediate jump to a
line , out of the normal consecutive l ine number order of

The general form of the statement is as follows :

transfer
program .
specified
execution .

GOTO line number

The line number to which the program jumps can be either greater or
lower than the current l ine number . It is thus possible to jump forward
or backward within a program . For example :

1 0 A=2
20 GOTO 50
30 A:SQR (A+ 1 4)
5 0 PRINT A , A*A
RUN

causes the following output :

2 4

When the program encounters line 20 , control transfers to line 50 ; l ine
50 is executed , control then continues to the line following line 50 .
Line 30 is never executed . Any number of lines can be skipped in either
direction.

When written as part of a multiple statement line, GOTO should
always be the last executable statement on the line, since any statement
following the GOTO on the same line is never executed . F or example :

1 1 0 A=ATN (B2) : PRINT A : GOTO 50

However," REM and DATA statements can follow a GOTO on the same line
because they are non-executable statements .

4 . 6 Relational Operators

Relational operators allow comparison of two values and are usually
used to compare arithmetic expressions or s trings in an IF • • • THEN
statement . The relational operators are :

MATHEMATICAL BASIC
SYMBOL SYMBOL EXAMPLE MEANING

= = A=B A is equal to B .

< < A<B A is less than B .

< <= , - =< A<=B A is less than or equal to
B.

-21 -

> >

> > = ' = >

< > ' ><

A>B

A>=B

A<>B

A is greater than B .

A i s greater than o r equal
to B .

A i s not equal to B .

The resul t o f the relational operators i s - 1 for true and 0 for
false .

4 . 6 . 1 Relational Operators in Strings

When applied to string operands , the relational operators test
alphabetic sequence . Comparison is made character by character on the
basis of the ASCII codes (See Appendix E) until a di fference is found .
If, while the comparison is proceeding , the end of one string is
reached , the shorter string is considered to be smal ler . F or example :

55 IF A$<B$ THEN 1 00

When line 55 is executed , the first characters of each string (A$ and
B$) are compared , then the second characters of each string , and so on
until the character in A$ is less than the corresponding character in
B$. If this test is true , execution continues at line 1 00 .
Essentially, the strings are compared for alphabetic order . Below is a
list of the relational operators and their string interpretations .

In any string comparison , leading and trailing blanks are
significant (i . e . , " ABC" is not equivalent to " ABC ") .

OPERATOR

=

<

>

<=

>=

<>

EXAMPLE

A$:B$

A$<B$

A$>B$

A$<=B$

A$>=B$

A$< >B$

-22-

MEANING

The strings A$ and B$ are
alphabetically equal .

The string A$ alphabetical ly
precedes B$.

The string A$ alphabetically
follows B$.

The string A$ is equivalent to
or precedes B$ alpha­
betically.

The string A$ is equivalent to
or follows B$ alpha­
betically .

The strings A$ and B$ are not
alphabetically equal .

4 . 7 Logical Operators

Logical operators
relational expressions .
sequences of statements :

are typically
For example ,

1 00 IF A = B THEN 1 50
1 1 0 IF C < D THEN 1 50

and

200 IF A < > 5 THEN 220
2 1 0 IF B = 1 0 THEN 250
220

used as
consider

Boolean operators in
the following two

In both cases the
operators AND and OR.
single statement :

sequences can be simplified by using the logical
The first two statements can be combined into a

1 00 IF A = B OR C < D THEN 150

Similarly, the second sequence of statements is equivalent to :

200 IF A = 5 THEN IF B = 1 0 THEN 250
220

This can be further simplified to :

200 IF A = 5 AND B = 1 0 THEN 250

Following the rules of Boolean algebra , the unary operator NOT will
change true into false and vice versa. For example :

1 00 IF A < > 5 THEN 1 50

is equivalent to :

1 00 IF NOT (A=5) THEN 1 50

More complex expressions can be constructed by using combinations of the
AND , OR , and NOT operators .

Logical operators may also be used for bit manipulation and Boolean
algebraic functions . The AND , OR , and NOT operators convert their
arguments into sixteen bit , signed , two's complement integers in the
range -3276 8 to 32767 . After the operations are performed , the result
is returned in the same form and range. If the arguments are not in
this range , a CF error message will be printed and execution will be
terminated . Truth tables for the logical operators appear below . The
operations are performed bitwise , that is , corresponding bits of each
argument are examined and the result computed one bit at a time . In
binary operations , bit 7 is the most significant bit of a byte and bit 0
is the least significant.

-23-

AND
X y X AND Y
1 1 1
1 0 0
0 1 0
0 0 0

OR
X y X AND Y
1 1 1
1 0 1
0 1 1
0 0 0

NOT
X NOT X
1 0
0 1

Some examples will serve to show how the logical operators work:

6 3 AND 1 6 = 1 6

1 5 AND 1 4= 1 4

- 1 AND 8:8

4 OR 2=6

10 OR 1 0 = 1 0

- 1 OR -2=-1

NOT 0 =- 1

NOT X=-(X+1)

6 3 = binary 1 1 1 1 1 1 and 1 6 = binary 1 0000 , so
63 AND 1 6 = 1 6

1 5 = binary 1 1 1 1 and 1 4 = binary 1 1 1 0 , so
15 AND 14 = binary 1 1 1 0 = 1 4

- 1 =binary 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 and 8=binary 1 000 ,
so - 1 AND 8 = 8

4 = binary 1 00 and 2 = binary 1 0 so 4 OR 2 =
binary 1 1 0 = 6

binary 1 0 1 0 OR ' d with itself is 1 0 1 0 = 1 0

- 1 , = binary 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 and
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 , so - 1 OR -2 = - 1

- 2 =

the bit complement of sixteen zeros is sixteen
ones , which is the two ' s complement
representation of - 1

the two ' s complement o f any number is the bit
complement plus one .

A typical use of l ogical operations is "masking " --testing a binary
number for some predetermined pattern of bits . Such numbers might come
from the computer's input ports and would then reflect the condition of
some external device .

-24-

4 . 8 The IF • • • THEN and IF • • • GOTO Statements

The IF-THEN statement is used to transfer control conditionally
from the normal consecutive order of statement numbers , depending upon
the truth · of some mathematical relation or relations . The basic form of
the IF statement is as follows :

THEN
IF expression line number

GOTO

where ' expression ' is an arithmetic expression . If the result of the
expression is nonzero (true) , execution begins at the line number given
and proceeds as usual . If the value of the expression is zero (false) ,
the next statement in numerical order will be executed . Usually the
statement is of the form:

THEN
IF expression rel . op . expression line number

GOTO

In this case , expressions cannot be mixed ; both must be string or both
must be numeric . Numeric comparisons are handled as described in 4 . 6 .
String comparisons are performed on the ASCII values of the s trings as
described in 4 . 6 . 1 and Appendix E . The rel . op . (relational operator)
must be , as described in 4 . 6 , and the line number is the line o f the
program to which control is conditionally passed .

If the value of the expression is true , control passes to the l ine
number specified . I f the value of the expression is false , control
passes to the next statement in sequence . For example :

30 IF A=B THEN 20 40 IF A<>7 1 GOTO 20
40 PRINT A+B 55 PRINT A
5 0 PRINT AA2 60 D=A+B+*C

An alternate form of the IF • • . THEN statement is as follows :

IF expression THEN statement

where the statement is any valid DISK BASIC s tatemen t . Note that
multiple statements can follow the THEN if they are separated by colons
(:) . With this form of the IF • • • THEN statement , if the expression
evaluates to non-zero (true) , the statements following the THEN are
executed . Otherwise , control passes to the next numbered l ine . F or
example :

1 0 A= 1 0
20 IF A= 1 0 THEN PRINT "TRUE" : GOTO 40
30 PRINT "FALSE"
40 E�

-�- -

4 . 9 The FOR and NEXT Statements

FOR and NEXT statements de fine the beginning and end of a loop . (A
loop is a set of ins truc tions which are repeated over and over again ,
each time being modified in some way until a terminal condi tion is
reached .) The F OR s tatement is of the form :

FOR variable = expression1 TO expression2 STEP expression3

where the variable is the index , expression1 is the ini tial value ,
expression2 is the terminal value , and expression3 is the incremental
value . For example :

1 5 F OR K=2 TO 20 STEP 2

causes the program to execute the designated loop as long as K is less
than or equal to 20 . Each time through the loop , K is incremented by 2 ,
so the loop is is executed a total of 1 0 times . After executing the
loop , when K=20 , program control pas ses to the line fol lowing the
associated NEXT statement , and the value of K is 22 .

The index variab le must be unsubscripted , although such loops are
commonly used in deal ing wi th subscripted variables . In such a case the
control variable is used as the subscript of a previously defined
variable . The expressions in the FOR statement can be any acceptable
BASIC expression .

The NEXT statement signal s the end of the loop which began with the
FOR statement . The NEXT statement is of the form :

NEXT variable

where the variable is the same variable specified in the F OR statement .
The variable is actually optional , since any NEXT statement encountered
is assumed by the computer to be closing the loop for the appropriate
F OR variable . Together the FOR and NEXT statements de fine the
boundaries of a program loop . When execution encounters the NEXT
statement , the computer adds the STEP expression value to the variab le
and checks to see if the variable is still less than or equal to the
terminal expression value . When the variable exceeds the terminal
expression value , control falls through the loop to the statement
following the NEXT s tatement . Note that the variable is not necessary
since when a NEXT s tatement is encountered it is assumed it is for the
appropriate FOR loop variab l e .

If the STEP expression and the word STEP are omitted from the F OR
statement , + 1 is the assumed value . Since + 1 is a common STEP value ,
that portion of the statement is frequently omit ted .

The expressions wi thin the FOR statement are evalua ted
initial entry into the loop . The test for completion of
made after each execution of the loop . (I f the test fails
the loop is still executed once .)

-26-

\

once upon
the loop is

ini tial ly ,

The index variable can be modified within the loop . When control
falls through the loop , the index variab le retains the value used to
fall through the loop .

The following is a demons tration of a simple FOR-NEXT loop . The
loop is executed 1 0 times ; the value of I is 1 1 when control leaves the
loop ; and +1 is the assumed STEP value :

1 0 F OR I= 1 TO 1 0
20 PRINT I
30 NEXT I
40 PRINT I

The loop i tsel f is defined by lines 1 0 through 30 . The numbers 1
through 1 0 are printed when the loop is executed . After I= 1 0 , control
passes to line 40 which causes 1 1 to be printed . If line 1 0 had been :

1 0 FOR I = 1 0 TO 1 STEP - 1

the value printed b y line 4 0 would have been 0 .
The following l oop is executed only once since the value of I=44

has been reached and the termination condi tion is satisfied .

1 0 FOR I = 2 TO 44 STEP 2
20 I = 4 4
3 0 NEXT I

If the initial value of the variable is greater than
value , the l oop is still executed once . The loop
statement :

1 0 FOR I = 20 TO 2 STEP 2

the terminal
se t up by the

will be executed only once although a statement like the following will
initialize execution of a loop properly :

1 0 FOR I = 20 TO 2 STEP -2

For positive STEP value& , the loop is executed unti l the control
variable is greater than its final value . For negative STEP values , the
loop continues until the control variable is less than its final val�e .

F OR loops can be nested but not overlapped . The depth of nesting
depends upon the amount of user storage space availab le ; in other word s ,
upon the size o f the user program and the amount o f RAM availab le .
Nesting is a programming technique in which one or more loops are
completely within another loop . The field of one loop (the numbered
lines from the FOR statement to the corresponding NEXT statement ,
inclusive) must not cross the field of another loop . For example :

-27 -

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two-Level Nesting

1 0 FOR I 1 = TO 1 0 !flO FOR I l • TO 1 0
c 2o FOR I2 = TO 1 0 20 FOR I2 = TO 1 0

30 NEXT I2 30 NEXT I 1

c
4o F OR I3 = TO 1 0 40 NEXT I2
50 NEXT I3
60 NEXT I 1

Three-Level Nesting

1 0 F OR I 1 = TO 1 0 1 0 FOR I 1 = TO 1 0
20 F OR I2 = TO 1 0 20 F O R I2 = TO 1 0

[30 FOR I3 = TO 1 0 [30 FOR I3 = TO 1 0
40 NEXT I3 40 NEXT I3

[50 F OR I4 = TO 1 0 �� FOR I4 = TO 1 0
60 NEXT I4 NEXT I4
70 NEXT I2 70 NEXT I 1
80 NEXT I 1 80 NEXT I2

I t is possible to exit from a F OR-NEXT loop wi thout the control
·variab le reaching the termination value . A cond i tional or unconditional
transfer can be used to leave a loop . Control can only transfer into a
loop which has been left earlier wi thout being comple ted , e nsuring that
termination and STEP values are assigned .

Both FOR and NEXT statements can appear anywhere in a mul tiple
statement l i ne . F or example :

1 0 F OR I = 1 TO 1 0 STEP 5 : NEXT I : PRINT " I= " ; I

causes :

I= 1 1

to be printed when executed .
In the case of nested loops which have the same endpoint , a single

NEXT statement of the fol lowing form can be used :

NEXT variable 1 , • • . , variab le N

The first variab le in the list mus� be that of the · mos t recent loop , the
second most recent , and so on . For example :

1 0 F OR I= 1 TO 1 0
20 F O R J= 1 TO 1 0
30
1 00 NEXT J , I

-28-

5 . FUNCTIONS AND SUBROUTINES

5 . 1 Functions

BASIC provides func tions to perform certain standard mathematical
operations which are frequently used and time-consuming to program .
These funct ions have three or four letter call names followed b y a
parenthesized argument . They are pre-defined and may b e used anywhere in
a program .

Call Name

ABS(x)

ATN (x)

CALL(x)

COS(x)

EXP (x)

FRE(x)

INT (x)

INP (x)

LOG(x)

PEEK (x)

POS (x)

RND (x)

SGN (x)

Function

Returns the absolute value of x .

Returns the arctangent of x as an angle i n
radians i n range .;t 'i\ / 2) , where 7\ = 3 . 1 4 1 5 9 .

Call the user machine language program a t
decimal location 33282 . (82 0 2 HEX) The D , E
registers have value of X upon entry and value
of Y upon return from machine language
routine .

Returns the cosine of x radians .

Returns the value of ex. where e =

Returns the number of free bytes

Returns the greatest integer
equal to x .

Returns a byte from input port x .
for x i s 0 to 25 5 .

2 . 7 1 82 8 .

not in use .

less than or

The range

Returns the natural logari thm of x .

Returns _ a byte from memory address
- 3 276 8<x<65535 ; or if x i s negative the memory
address is 65536+x .

Returns the value of the current
position between 0 and 6 3 .

Returns a random number be tween 0 and 1 .

cursor

Returns a - 1 , 0 , or 1 , i ndicating the sign of
x .

-29-

SIN(X)

SPC (x)

SQR (x)

TAB(x)

TAN (x)

Returns the sine o f x radians .

Causes x spaces to be generated . (Valid only
in a PRINT statement) .

Returns the square root of x .

Causes the cursor to s pace over to column
number x . (Valid in PRINT statement only) .

Returns the tangent of x rad i ans .

The argument x to the func tions can be a constant , a variab le , an
expression , or another function . Square bracke t s cannot be used as the
enclosing characters for the argument x , e . g . SIN [x] is i llegal .

Func tion calls , consisting of the function name followed by a
parenthes ized argument , can be used as expressions anywhere that
express ions are l egal .

Values produced by the functions SIN(x) , COS(x) , ATN(x) , SQR(x) ,
EXP (x) , and LOG(x) have six significant digi t s .

5 . 1 . 1 The Sine and Cosine Functions ; SIN (x) and COS(x)

The SIN and COS func tions require a n argument angle expressed i n
radians . I f the angle is s tated in degrees , conversion to radians may
be done using the identity :

radians = degrees * ('it I 1 80)

In the following example program , 3 . 1 4 1 5 9 i s used as a nominal
value for � . P is set equal to this value at l ine 20 . At l ine 40 the
above relationship is used to convert the input value into radians .
Note the use of the TAB function to produce a more legib le printou t .

1 0 REM CONVERT ANGLE (X) TO RADIAN S , AND
1 1 REM F IND SIN AND COS
20 p = 3 • 1 4 1 5 9
25 PRINT " DEGREES" , , " RADIANS" , , " SINE" , , " COSINE"
30 F OR X = 0 TO 90 STEP 1 5
40 Y = X* (P/ 1 80)
60 PRINT X , Y ; TAB (3 2) ; SIN(Y) ; TAB(4 8) ; COS(Y)
7 0 NEXT X

RUN
DEGREES RADIANS SINE

0 0 0
1 5 . 26 1 7 9 9 . 25 88 1 9
30 . 5 235 9 8 . 5
45 . 785 3 9 8 . 70 7 1 06
60 1 . 0472 . 86 6 0 25
75 1 . 309 • 965 9 26
90 1 . 5708 1

-30-

COSINE
1
. 96 5 926
. 8 6 6 0 26
. 70 7 1 07
. 50 0 0 0 1
. 25 882
1 . 1 235 2E-0 6

5 . 1 . 2 The Arctangent and Tangent Functions ; ATN(x) and TAN(x)

The arctangent function re turns a value i n radian measure , i n the
range - r, /2 to + 'l /2 corresponding to the value of a tangent supplied as
the argument (x) .

In the following program, the input is an angl e in degrees .
Degrees are then converted to radians at line 5 0 . At line 70 t he
tangent value , z , is supplied as the argument to the ATN function to
derive the value found on column 4 of the printout under the label'
ATN(x) . Also in line 70 the radian value of the arctangent function i s
converted back t o degrees and printed i n the fifth column of the
printout as a check against the input value shown in the first column .

1 0 p = 3 . 1 4 1 5 9
1 5 PRINT
20 PRINT
2 1 PRINT
25 PRINT
30 F OR X
35 PRINT

11ANGLE11 , 11ANGLE" ; TAB(20) ; "TAN(X) " ;
TAB(3 2) ; "ATAN(X) " , , "ATAN(X) "
" (DEGS) " , " (RADS) " , , , " (RADS) " , , " (DEGS) "
= 0 TO 45 STEP 1 5

4 0 FOR X = 0 TO 7 5 STEP 1 5
5 0 Y = X * P/ 1 80
60 Z = TAN(Y)
7 0 PRINT X , Y ; TAB(20) ; Z ; TAB(3 2) ; ATN(Z) ; TAB(4 8) ; ATN(Z) * 1 80 / P
80 NEXT X
RUN
ANGLE
(DEGS)

0
1 5
30
45
60
75 '

ANGLE
(RADS)

0
. 2 1 7 99
. 5 235 9 8
. 7 85 3 9 8
1 . 0472
1 . 309

TAN(X)

0
· ?67949
. 57735
- 9 99999
1 • 7 3205
3 . 7 320 4

5 . 1 . 3 The Square Root Func tion ; SQR (x)

A TAN(X)
(RADS)

0
. 26 1 7 99
. 5 235 9 8
. 7 85 3 9 8
1 . 0472
1 . 309

A TAN(X)
(DEGS)

0
1 5
30
45
60
75

This func tion derive s th� square root of any posi tive number as
shown below :

1 0 INPUT X
20 X = SQR (X)
3 0 PRINT X
40 GOTO 1 0
RUN
? 1 6

4
? 1 000

3 1 . 6 228
? (LINEFEED) (RETURN)
READY

If the argume nt is negative , a CF error wi ll result .

-3 1 -

5 . 1 . 4 The Exponential and Logarithmic Functions ; EXP (x) and LOG (x)

The exponential func tion raises the number e t o the power x . EXP
is the inverse of the LOG function . The relationship is :

LOG(EXP (X)) = X = EXP (LOG(X))

The following program prints the exponential equivalent of an input
value .

1 0 INPUT X
20 PRINT EXP (X) , LOG(EXP (X)) , EXP (LOG(x))
30 GOTO 1 0
RUN

? 87
6 . 0760 1 E+37

? . 0 0 3 3
1 . 0 0 3 3 1

? 1
2 . 7 1 828

87 87

3 . 2 9 9 9 E-0 3

1

3 . 3 E-0 3

Logarithms to the base e may easily be converted to any o ther base
using the fol l owing formula :

log N =

l og e N

log e a

where a represents the desired base and e = 2 . 7 1 828 .
program illustrates conversion to the bases 1 0 and 2 .

The fol l owing

1 0 PRINT " VALUE" , " BASE E LOG" , "BASE 1 0 LOG " , "BASE 2 LOG"
20 INPUT X
30 PRINT X , LOG(X) ; TAB(24) ; LOG(X) / LOG(1 0) ;
40 PRINT TAB(40) ; LOG{ X) / LOG(2)
5 0 GOTO 20
RUN
VALUE BASE E LOG BASE 1 0 LOG BASE 2 LOG
? 1

1 0 0 0
?4

4 1 . 38629 . 60 20 6 2
? 1 0

1 0 2 . 3 0 25 9 3 . 3 2 1 9 3
? 1 000

1 000 6 . 90776 3 9 . 9 6 5 7 9

A n attempt to find the LOG of �ero or of a negative number causes a CF
error message .

-32-

5 . 1 . 5 The Absolute Value F unction ; ABS(x)

The ABS func tion returns the ab solute value of any argument . The
absolute value is the argument itself with a posi tive s ign . F or example
the absolute value of both 3 and -3 is 3 . The ABS function may b e
illustrated a s follows :

PRINT ABS(1 2 . 3 4) , ABS(-23 . 65)
1 2 . 34 23 . 65

5 . 1 . 6 The Greatest Integer Function ; INT(x)

· The greatest integer function returns the value of the greatest
integer not greater than x. For example :

PRINT INT(34 . 6 7)
34

PRINT INT(1 1)
1 1

The INT of a negative number is a negative number with the same or
larger absolute value , i . e . , the same or smal ler algebraic value . F or
example :

PRINT INT(-23 . 45)
-24

PRINT INT(- 1 1)
- 1 1

The INT func tion can be used to round numbers t o �he nearest
integer , using I NT(X+ . 5) . For example :

PRINT INT(3 4 . 67 + . 5)
35

PRINT INT(-5 . 1 + . 5)
-5

INT (x) can also be used to round to any given decimal p l ac e or
integral power of 1 0 , by using the following expression as an argument :

(X* 1 0 "D+ . 5) I 1 0 "D

where D is an integer suppl ied by the user .

-33 -

1 0 REM INT FUNCTION EXAMPLE
1 5 PRINT
20 PRINT "NUMBER TO BE ROUNDED : "
25 INPUT A
40 PRINT "NO . OF DECIMAL PLACES : "
45 INPUT D
60 B = INT(A* 1 0 AD + . 5) / 1 0 AD
70 PRINT " NUMBER ROUNDED = " ; B
80 GOTO 1 5
RUN

NUMBER TO BE ROUNDED
?55 . 6 5 842
NO . OF DECIMAL PLACES :
?2
NUMBER ROUNDED = 55 . 66

NUMBER TO BE ROUNDED
?78 . 375
NO . OF DECIMAL PLACES :
?-2
NUMBER ROUNDED = 1 00

NUMBER TO BE ROUNDED
?67 . 38
NO . OF DECIMAL PLACES:
? - 1
NUMBER ROUNDED = 70

NUMBER TO BE ROUNDED
? (LINEFEED) (RETURN)

READY

5 . 1 . 7 The Random Number Function; RND (x)

The random number function produces a random number , o r random
number set between 0 and 1 . The numbers are reproducible in the same
order after the ESC , E sequence if X>O for later checking of a program.
In DISK BASIC the form RND without arguments i s not legal . For
example :

1 0 PRINT "RANDOM NUMBERS :
30 F O R I = 1 TO 8
40 PRINT RND(I) ,
5 0 NEXT I
RUN
RANDOM NUMBERS :

. 1 00 25 0

. 83 90 1 9
. 96 8 1 34
. 30 6 1 2 1

-34-

. 886657

. 2855 5 3
. 6 36 4 4 4
. 2855 34

To ob tain random digits from 0 to 9 , line 40 can be changed to read :

40 PRINT INT (1 0*RND (1)) ,

This time the results will be printed as follows :

RANDOM NUMBERS :
8 9 3
2

5 6 8

It is possib le to generate random numbers over a given range .
open range (A , B) is desired , use the expression :

If the

(B-A) *RND (1) +A
I

to produce a random number in the range A<n<B.
The following program produces a random number set in the open

range (4 , 6) . The extremes , 4 and 6 , are never reached .

1 0 REM RANDOM NUMBER SET IN OPEN RANGE 4 , 6 .
20 FOR B = 1 TO 8
30 A = (6-4) * RND (1) + 4
40 PRINT A ,
5 0 NEXT B
RUN

4 . 20054
4 . 9 9 1 25

5 . 9 2962
5 .0 2420

5 . 77325
4 . 1 8 825

5 . 27288
5 _. 99989

Negative arguments , i . e . RND(- 1 23) , will start a new random number
sequence , while RND (O) will always generate the last random number .

5 . 1 . 8 The Sign Function; SGN (x)

The sign function returns the value 1 if x is a posi tive number , 0
if x is 0 and - 1 if x is negative . For example :

1 0 REM SGN FUNCTION EXAMPLE
20 READ A , B , C
25 PRINT "A = " A , "B = "B , "C = "C
30 PRINT " SGN (A) = "SGN(A) , "SGN(B) =
40 PRINT " SGN (C) = " SGN(C)

" SGN(B) ,

50 DATA -7 . 32 , . 44 , 0
RUN
A = -7 . 32
SGN (A) = - 1

B = . 44
SGN (B) =

-35-

c = 0
SGN(C) = 0

5 . 1 . 9 The Position Function ; POS(x)

The POS func tion returns the current x coordinate of the cursor ' s
position. It is most often used to determine · whether or not a
particular program result , either string or numeric , will fit on a given
line . By use of the POS(x) function , the correct placement of the
answer can be easily determined .

5 . 2 User Defined Func tions

In some programs it may
of statements or mathematical
BASIC allows definition of
calling of these func tions in
mathematical functions .

b e necessary to execute the same sequence
formulas in several different places .
unique operations or expessions and the

the same way as the predefined s t andard

These user defined func tions
first two letters of which are FN

are described by a function name , the
followed by any acceptable BASIC

variab l e name .

Legal

FNA
F NAA
FNA1

For example :

Illegal

FNA$
FN2

Each function is defined once and the defini tion may appear anywhere in
the program . The defining or DEF s tatement is formed as follows :

DEF FNA (argument) = expression

where A is a variab l e name . The argument mus t be a simple variable .
The expression may contain the argument variab le and any o ther program
variab les . For example :

1 0 DEF F NA (S) = SA2

causes a later s tatement :

20 R = FNA(4) +1

to be evaluated as R = 1 7 . As another example :

50 DEF FNB(A) = A+XA2
6 0 Y= FNB(1 4)

causes the func tion to be evaluated with the current value of the
variable X within the program. The two following programs :

-36 -

1 0 DEF FNS(A) = AAA
20 F OR I= 1 TO 5
30 PRINT I , FNS(I)
4 0 NEXT I

cause the same output :

RUN
1 1
2 4
3 27
4 25 6
5 3 1 25

1 0 DEF FNS(X) = XAX
20 FOR I= 1 TO 5
30 PRINT I , FNS(I)
4 0 NEXT I

User defined functions cannot have several arguments , as shown below:

Such a statement will cause an error of the type :

SN ERROR IN 25

When calling a user defined function, the parenthesized argument
can be any legal expression . The value of the expression is substituted
for the argument variable . For example :

1 0 DEF F NZ (X) = XA2
20 A=2
30 PRINT FNZ(2+A)

Line 30 causes the result 1 6 to be printed .
If the same function name is defined more than once , then the last

defintion (the one with the higher line number) will be used . The
program below:

1 0 DEF FNX (X) = XA2
20 DEF F NX (X) = X+X
30 A=5
40 PRINT F NX (A)

will cause 10 to be printed .
The function variable need not appear in the function expression as

shown below:

1 0 DEF FNA (X) = 4+2
20 R:FNA(1 0) +1
30 PRINT R
RUN

7

-37-

5 . 3 BASIC String F unctions

Like the intrinsic mathematical functions described above , BASIC
contains various functions for use with character strings . These
func tions al low the program to concatenate two strings , access part of
a string , de termine the number of charac ters in a string , generate a
character string corresponding to a given number or vice versa , and
perform o ther useful operations . The various functions availab l e are
summarized in the following table .

Call Name

ASC(x$)

CHR$ (x)

F RE(x$)

LEFT$ (x$, I)

LEN(x $)

MID $ (x$, I , J)

STRING F UNCTIONS

Function

Returns the eight bit internal ASCII code
(0 -255) for the one-character string . If the
argument contains more than one character ,
then the code for the first character in the
string is returned . A value of 0 is returned
if the argument is a nul l s tring (LEN(x$) =0) .
(See ASCII codes in Appendix E) .

Generates a one-charac ter string having the
ASCII value of x where x is a number greater
than or equal to 0 and less than or equal to
255 . Only one charac ter can be generated .

Returns number of free s tring byte s . (See
CLEAR statement in 3 . 1 1)

Returns left-most I characters of string (x$) .
If I >LEN(x $) , then x$ is returned .

Returns the number of charac ters in the the
string x$, with non-printing characters and
blanks being counted .

J is optional . Wit hout J , returns right-most
characters from x$ b eginning with the Ith
character . I f I >LEN(x $) , MID$ returns the
nul l s tring . With 3 argument s , i t returns a
string of length J of charac ters from x$
beginning with the Ith character . If J is
greater than the number i f charac ters in x$ to
the right of I , MID$ re turns the rest of the
string . Argument ranges : O < I<=255 ,
O <= J<=255 .

-38-

RIGHT$ (x$, I)

STR $ (x)

VAL(x $)

Re turns right-most I characters of s tring
(x$) . If I >LEN(x$) , then x$ is returned .

Returns the string which represents the
numeric value of x as it would be printed by a
PRINT statement .

Returns the number represented by the s tring
x$. If the firs t charac ter of x$ is not + , - ,
or a digit , then the value 0 is returned .

In the above example , x$ and y$ represent any legal s tring
expressions , and I and J represent any legal arithmetic expressions .

NOTE : Unlike the mathematical functions , charac ter string func tions
cannot be defined by the user . Similar results can be obt ained by the
use of sub routines , as described in Section 5 . 4 .

5 . 4 Sub routines

A subroutine is a sect ion of a program performing some operation
required at more than one point in the program . Some times a comp licated
I/ 0 operation for a volume of data , a mathematical evaluation which is
too complex for a user defined function , or any number of o ther
processes may be best performed in a subroutine .

More than one subroutine can be used in a single program , in which
case they are best p laced one after the other in line number sequence
before the DATA statements . It is a useful prac tice to assign
distinctive line numbers to subroutines . For example , if the main
program uses line numbers up to 1 9 9 , use 200 and 300 as the first l ine
numbers of two sub routines . When subroutines are included in a program,
the program b egins execution and continues until it encounters a . GOSUB
statement of the form :

GOSUB line number

where the line number following the word GOSUB is that of the first line
of the subroutine . Control then transfers to that line of the
subroutine . For example :

50 GOSUB 200

Control is transferred to line 200 in the user program . The first line
in the subroutine can be a remark or any other valid BASIC s tatement .

Having reached the line containing a GOSUB statement , control
transfers to the line indicated after GOSUB ; the subroutine is processed
until BASIC encounters a RETURN statement of the form :

RETURN

which causes control to return to the statement fol l owing the original
GOSUB statement . A subroutine must always be exited via a RETURN
statement .

Before transferring to the subroutine , BASIC internally records the

-39-

next sequential statement to be processed after the GOSUB s tatement ; the
RETURN s tatement is a signal to transfer control to this statement . In
this way , no matter how many subroutines there are or how many times
they are called , BASIC always knows where to transfer control next . The
fol lowing program demonstrates the use of GOSUB and RETURN .

1 REM THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
1 0 DEF F NA(X) = ABS(INT (X))
20 INPUT A , B , C
30 GOSUB 1 00
40 A=FNA(A)
50 B:FNA(B)
60 C=FNA(C)
70 PRINT
80 GOSUB 1 00
90 END
1 00 REM THIS SUBROUTlNE PRINTS OUT THE SOLUTIONS
1 1 0 REM OF THE EQUATION : AXA2 + BX + c = 0
1 20 PRINT " THE EQUATION IS " A " *XA2 + " B"*X + " C
1 30 D = B*B -4 *A*C
1 40 IF D < >O THEN 200
1 50 PRINT " ONLY ONE SOLUTION • • . X " ; -B/ (2*A)
1 60 RETURN
1 70 IF D<O THEN 200
1 80 PRINT " TWO SOLUTIONS • • • X= " ;
1 85 PRINT (-B+SQR(D)) / (2*A) ; ") AND (" ; (-B-SQR (D)) / (2*A)
1 90 RETURN
200 PRINT " IMAGINARY SOLUTIONS . • • X = (" ;
205 PRINT - B/ (2*A) " , " SQR(-D) / (2*A) ") AND (" ;
207 PRINT - B/ (2*A) " , " ; -SQR (-D) / (2 * A) ") "
2 1 0 RETURN
900 END

Subroutines can be nested ; that is , one subroutine can call another
subroutine . If the execution of a subroutine encounters a RETURN
statement , it returns control to the s tatement following the GOSUB which
called that sub routine . Therefore , a sub routine can call another
subroutine , even itse l f . Subroutines can be entered at any point and
can have more than one RETURN s tatement . It i s possib le to transfer to
the b eginning or any part of a subroutine ; mul tiple entry points and
RETURN ' s make a subroutine more versatile .

-40-

5 . 5 The ON GOTO and ON GOSUB Statements

The ON • • • GOTO s tatement provides another type of cond i tional
branching . Its form is as follows :

ON expression GOTO line number list

After the value of the expression is truncated to an integer in the
range 0 -255 , say I , the s tatement causes BASIC to branch to the line
whose number is Ith in the lis t . If I=O or is greater than the number
of l ines in the list , execution will continue at the next l ine after the
ON • • • GOTO s tatement . If I is less than 0 or greater than 255 , a CF
error wil l resul t . For example , the following sequence of IF s tatements
can be replaced by a single ON . • . GOTO s tatement . Thus ;

1 0 0 IF X= 1 THEN 1 000
1 1 0 IF X=2 THEN 2000
1 20 IF X=3 THEN 3000
1 30 IF X=4 THEN 4000
1 40 IF X=6 THEN 6000
1 50 Y= 1 0

can b e replaced b y :

1 00 ON X GOTO 1 00 0 , 2000 , 3000 , 4000 , 1 50 , 6000
1 50 Y= 1 0 .

Note that there was no IF statement for X=5 , so in the ON • • • GOTO
statement the corresponding line number is 1 50 , which is the next l ine .

Subroutines may b e called conditional ly by use of the ON • • • GOSUB
statement . Its form is as follows :

ON expression GOSUB line number list

The execution is the same as ON • • • GOTO except that the line numbers are
those of the first l ines of subroutines . Execution continues at t he
next s t atement after the ON • • • GOSUB upon return from one of the
subrou t ines .

Note that ON • • • GOTO and ON • • • GOSUB s tatements do not have to b e the
last executab le s tatements on a l ine .

-4 1 -

6 . ARRAYS

6 . 1 Introduction to Arrays

Arrays or sub scripted variab les are mos t frequently used for
storing lists of information in a program using a single name to refer
to the list as a whole and using sub scripts to refer to individual
items . For example , consider the fol lowing list of 1 2 numbers
corresponding to the number of days in each month in a non- leap year :

3 1 , 28 , 3 1 , 30 , 3 1 , 30 , 3 1 , 3 1 , 30 , 3 1 , 30 , 3 1

The notion of subscripts follows naturally. F or instance , the 5 th item
in the list corresponds to the number of days in May . Using an array
(list) of size 1 2 , named M , to refer to all the entries in the list as a
whole , the fifth item of M can be simply denoted as M(5) . Similarly ,
the number of days in F ebruary is denoted by M(2) . If the number of
days in the Ith month is desired , then M(I) contains that value .

In the following example , the data values are read into an array
which is dimensioned to size 1 2 in line 1 0 . (See Section 6 . 4)

1 0 DIM M(1 2)
20 F OR I= 1 TO 1 2 : READ M(I) : NEXT I
30 DATA 3 1 , 28 , 3 1 , 30 , 3 1 , 30 , 3 1 , 3 1 , 30 , 3 1 , 30 , 3 1
35 REM PRINT THE NUMBER OF THE MONTH AND DAYS IN EACH MONTH
36 REM ADD UP THE NUMBER OF DAYS IN THE MONTHS
40 D=O
5 0 F OR I= 1 TO 1 2
60 PRINT I , M(I)
7 0 D=D+M(I)
80 NEXT I
90 PRINT " TOTAL DAYS = " , D

The resulting output from this program is :

RUN
1 3 1
2 28
3 3 1
4 30
5 3 1
6 30
7 3 1
8 3 1
9 30
1 0 3 1
1 1 30
1 2 3 1

TOTAL DAYS = 365

-42-

If the above program were expanded past line 90 the values in M would be
accessib le at any point during the execution of the program unless they
were changed by an assignment or input statement .

6 . 2 Subscripted Variab les

The name of a subscripted variable is any acceptable BASIC variable
name followed by one or more integer expressions in parentheses within
the range 0 - 3 2767 . Subscripted variable names follow the same naming
conventions as simple variab les with the first 2 characters being
significant . For example , a list might be described as A (I) , where I
goes from 0 to 5 as shown below :

A (O) , A(1) , A(2) , A(3) , A(4) , A(5)

This allows reference to each of the six elements in the lis t , and can
be considered a one dimensional algebraic matrix as follows :

A (O)
A (1)
A (2)
A (3)
A (4)
A (5)

A two-dimensional matrix B (I , J) can be defined in a similar manner :

B(O , 0) , B(O , 1) , B(O , 2) , • • • , B(O , J) , • • • B(I , J)

and graphically illustrated as follows :

B(O , O)
B(1 , 0)

B (I , O)

B(O , 1)
B(1 , 1)

B(I , 1)

B(0 , J)
B(1 , J)

B(I , J)

Higher dimensional arrays can also be formed . The upper limit is
determined by the size of the input buffer giving a prac tical l imit of
40 .

Subscripts used with subscripted variables throughout a program can
be explicitly stated or they can be any legal expression. If the value
of the expression is non-integer , the value is truncated so that the
subscript is an integer .

It is possible to use the same variable name as both a sub scripted
and unsubscripted variable . Both A and A(I) are valid variab les and can
be used in the same program . The variable A has no relationship to any
element of the matrix A(I) . Subscripted arrays of charac ter strings may
also be defined , and their variable names are distinct . A$(I) bears no
relation to A(I) or A .

-43-

A dimension (DIM) statement is used with subscripted variab les to
define the maximum number of elements in a matrix .

If a subscripted variable is used without appearing in a DIM
statement , it is assumed to be dimensioned to length 1 0 in each
dimension (that is , having eleven elements in each dimension , 0 through
1 0) . However , all matrices should be correctly dimensioned in a
program.

6 . 3 Subscripted String Variables

Any list or matrix variable name followed by the $ character
denotes the string form of that variable . For example :

V$ (n)
C$(m , n)

M2$(n)
G1 $ (m, n)

where m and n
whole .

indicate the position of the matrix element within the

The same name can be used as a numeric variab le
variable in the same program with no restric tion.
dimensioned variables can also have the same name .

A
A$

A(n)
A$ (m, n)

and as a string
Simple variables and
For example :

can all be used in the same program; however , A(n , m) could not be used ,
because it redefines the size of A(n) .

String lists and matrices are defined wi th the DIM statement as are
numerical lists and matrice s .

6 . 4 The DIM Statement

The DIM statement is used to define the maximum number of elements
in a matrix . The DIM statement is of the form :

DIM variable(n) , variable(n , m) , variable$ (n) , variable$(n , m)

where variables specified are indicated wi th their maximum subscript
value (s) . For exampl e :

1 0 DIM X (5) , Y(4 , 2) , A(1 0 , 1 0)
1 2 DIM A4 (1 00) , A$ (25)

Arrays can be dynamically dimensioned by using numeric expressions
instead of integer constants to define the size of an array . Any number
of matrices can be defined in a single DIM statement as long as they are
separated by commas .

The first element of every matrix is automatically assumed to have
a subscript of zero . Dimensioning A (6 , 1 0) sets up room for a matrix
with 7 rows and 1 1 columns . This zero element is illustrated in the
following program :

-44-

1 0 REM MATRIX CHECK PROGRAM
20 DIM A(6 , 4)
30 FOR I=O TO 6
40 A(I , O) = I
50 FOR J=O TO 4
60 A(O , J) = J
7 0 PRINT A(I , J) ;
80 NEXT J : PRINT : NEXT I
90 END
RUN

0 1 2 3 4
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0

Notice that a variable has a value of zero until it is assigned
another value .

Whenever an array is
with (m+ 1 , n+1) elements .
element o f the matrix .
martrix which would then
element .

dimensioned (m , n) , the matrix is allocated
Memory space can be conserved by using the O th

For example , DIM A(5 , 9) dimensions a 6 * 1 0
be referenced beginning with the A(O , O)

The size and number of matrices which can be defined depend upon
the amount of storage space available.

A DIM statement can be placed anywhere in a multiple statement line
and can appear anywhere in the program. A matrix can only be
dimensioned once . DIM statements must appear prior to the first
reference to an array . DIM statements are generally among the first
statements of a program to allow them to be easily found if any
alterations are later required .

All arr�ys specified in DIM statements are allocated space when the
DIM statement is executed . All other arrays are declared at the first
reference executed .

-45 -

7 . FURTHER SOPHISTICATION

7 . 1 F ormatting the Printout

Often , the purpose of a program will require that results be
printed out in a particular format , rather than simply in a list or line
at the end of a program run . BASIC provides certain facilities for use
in formatting the printout , so that the desired resul t can be achieved .

When a comma separates a text string from another PRINT list item ,
the item is printed at the beginning of the next available print zone .
Semicolons separating text strings from other items are ignored . The
screen is divided into 8 print zones of 8 characters each . A comma or
semicolon appearing as the last item of a PRINT list always suppresses
the carriage return/ line feed operation . BASIC does an automatic
carriage return/ line feed if a string is printed past column 64 .
Examples of the use of comma include :

1 0 A= 3
20 B=2
30 PRINT A , B , A+B, A*B, A-B, B-A

When the preceding lines are executed , the computer will print :

3 2 5 6 1 - 1

Notice that each character i s eight spaces from the next character. Two
commas together in a PRINT statement cause a print zone to be skipped ,
as in:

10 A= 1
20 B=2
30 PRINT A , B , , A+B
HUN

1 2 3

HEADY

If the last item in a PRINT statement is followed by a comma , no
carriage return/ linefeed is output , and the next value to be printed (by
a later PRINT statement) appears in the next available print zone . For
example :

-46 -

1 0 A= 1 : B=2 : C=3
20 PRINT A , : PRINT B : PRINT C
RUN

1 2
3

READY

If a tighter packing of printed values is desired , the semicolon
can be used in place of the comma. A semicolon causes no spaces to be
output other than the leading space automatically output with each
non-negative number . A comma causes the cursor to move at least one
space to the next print zone or perform a carriage re turn/ line feed if
the string prints past column 64 . The following example shows the
effects of the semicolon and comma .

1 0 A= 1 : B=2 : C=3
20 PRINT A ; B ; C ;
30 PRINT A+1 ; B+1 ; C+1
40 PRINT A , B , C
RUN

1 2 3 2 3 4
1 2 3

READY

The following example demonstrates the use of the formatting
characters , and ; with text strings :

1 20 PRINT " STUDENT"X ; " GRADE = " G ; " AVG . = " A ;
1 30 PRINT 11 NO. IN CLASS ="N

Assuming that calculations had been done prior to these lines , the
following would result :

STUDENT 1 1 9050 GRADE = 87 AVG . = 85 . 4 4 NO. IN CLASS = 26

7 . 1 . 1 The Tabulator Function; TAB(x)

The TAB function is used in a PRINT statement to write spaces to
the specified colomn on the output device . The columns on the screen
are numbered 1 to 6 4 . The form of the command is :

PRINT TAB(x)

where (x) is the column number in the range 0 - 255 . (If x exceeds 6 4 ,
however , every other consecutive line is tabbed until the number of
specified spaces are printed . If (x) is greater than 255 or negative ,
an error message is printed as follows :

CF ERROR
READY

If (x) is non-integer , only the integer portion of the number is used .
If the column number (x) specified is less than or equal to the current
column number , the TAB function has no effec t .

-47-

7 . 1 . 2 The Space Function ; SPC (x)

The SPC function can b e used i n much the same fashion a s TAB in
PRINT statements . This function prints ,the number of spaces indicated
by (x) which must be in the range 0-255 ; otherwise a CF error results.

Note that if either a TAB(x) or SPC (x) is the last item in a print
list the carrige return/ line feed is suppressed .

7 . 2 Immediate Mode and Debugging

Immediate mode operation is especially useful for program debugging
(error removal) , and performing simple calculations in situations which
do not occur with sufficient frequency or with sufficient complication
to justify writing a program.

In order to facilitate debugging a program , END statements can be
liberally placed throughout the program. Each END statement causes the
program to hal t , at which time the various data values can be examined
and perhaps changed in immediate mode . The command :

GOTO xxxxx

is used to continue program execution (where xxxxx is the number of the
next program line to be executed) . GOSUB and IF commands can also be
used . The values assigned to the variables when the RUN command is
executed remain intact until a CLEAR statement or another RUN command is
executed .

When using immediate mode , nearly all of the standard statements
can be used to generate or print result s .

If LINEFEED i s used t o halt program execution , the GOTO xxxx or
CONT command can be used to continue execution . Since CTRL/ J or
LINEFEED does print the number of the line where execution stopped , it
is easy t o know where to resume the program. Note that if a BASIC
program statement is entered or altered , it is not possib le to continue
execution.

7 . 2 . 1 Res trictions on Immediate Mode

The INPUT and DEF statements cannot be used in immediate mode and
such use results in the following error message :

ID ERROR
READY

Certain other commands , while not illegal , make no logical sense
when used in immediate mode . Commands in this category are DIM and
DATA.

Although the standard mathematical functions are permissible , user
functions are not de fined unti l the program is executed , and therefore
any references to user defined functions in immediate mode cause an
error unless the program containing the definition was previously
executed .

-48-

Thus , the following dialogue might result if a function were
defined in a user program and then referenced in immediate mode .

1 0 DEF FNA (X) = XA2 + 2*X : REM SAVED STATEMENT
PRINT FNA(1) : REM IMMEDIATE MODE

UF ERROR
READY

but if the sequence of statements were :

1 0 DEF FNA (X) = XA2+2*X : REM SAVED STATEMENT
RUN

READY

PRINT FNA(1)
3

READY

the immediate mode statement would be executed .

7 . 3 Machine Level Interfaces with DISK BASIC

DISK BASIC has several features that allow the user access to the
machine level input/output of the microprocessor . By using the WAIT and
OUT s tatements and the INP function , various input/output operations can
be performed . Other machine dependent features allow access to the
memory and assembly language subprograms . (See Appendices D . 1 and D . 2
for Key Memory Locations and Port Assignments .)

7 . 3 . 1 The WAIT Statement

The status of memory ports can be monitored by the WAIT statement
which has the following forms :

WAIT I , J
WAIT I , J , K

where I is the number of the port being monitored , and J and K are
integer expressions . The port status is exclusive OR 1 ed with K i f
present and the result i s AND ' ed with J . Execution i s suspended until a
non-zero value resul ts . In other words , J picks the bits of port I to
be tested and execution resumes at the next statement after the WAIT .
If K is omitted , it is assumed to be zero . I , J , and K must be in the
range 0 to 255 ; otherwise , a CF error result s .

- 49-

7 . 3 . 2 The OUT Statement

The form of the OUT statement is as follows :

OUT I , J

where I and J are integer expressiops in the range 0 to 255 . OUT sends
the 8 bit quantity (byte) signified by J to output port I .

WARNING : If bytes are output to ports on the SMC 5027 CRT chip ,
serious damage can result to the COMPUCOLOR II . (See Appendix D . 2)

7 . 3 . 3 The Input Function ; INP(x)

The INP function is the counterpart of the OUT statement . Its form
is as follows :

X = INP(I)

INP reads a byte (8 b i t quantity) from port I where I is a n integer
expression in the range 0 to 255 .

7 . 3 . 4 The Peek Function; PEEK(x)

The PEEK Function is called as follows :

J = PEEK (!)

where J i s the integer value returned i n the range 0 -255 that i s t o be
stored in the memory location speci fied by the integer expression I .
The range of I is -327 6 8 to 65535 . If I is negative , then the address
is 65536+I ; and if I is posi tive , the address is I .

7 . 3 . 5 The POKE Statement

The form of the POKE statement is as follows :

POKE I , J

where J is an integer expression in the range 0 to 255 that is to be
stored in the memory loca tion specified by the integer expression I .
The range of I is -327 6 8 to 65535 . If I is negative , then the address
is 65536+I ; and if I is posi tive , the address is I .

7 . 3 . 6 The User Call Func tion ; CALL(x)

The CALL function is used for interfacing with 80 80 machine
language subroutines . The function can be used in the same manner as
the other mathematical functions . The form is as follows :

Y = CALL(x)

where the assignment x must be in the range -327 6 8 to 65535 . The value
Y returned is in the range -32768 to 327 6 7 .

-5 0-

The CALL function converts the argument into a 2 byte integer and
stores the result in the 80 80 ' s D and E registers (D contains the high
byte , E the low byte .) The BASIC interpreter then executes an 80 80 CALL
instruction to location 33 282 (820 2 HEX) , which , unless modifed by the
user , contains a jump to the CF ERROR message routine . The user must
modify the locations 33282 through 33284 so that they contain a JMP to
the desired machine language routine . Upon return, the 2 byte integer
in the D , E registers is converted back into floating point forma t . The
stack level must be preserved at the same point at which the user
entered the CALL, and the H and L registers must be preserved . All
other 80 80 registers can be modified .

For example , consider the following assembly language subroutine
which negates the contents of the D and E registers .

ORG 0 8Z02H ; 33282
JMP NEGATE

ORG 0 9FFO H ; 40944
NEGATE : MOV A , D ; COMPLEMENT

CMA ; HIGH
MOV D , A ; BYTE
MOV A , E ; COMPLEMENT
CMA ; LOW
MOV E , A ; BYTE
INX D ; INCREMENT AND FORM 2 ' S COMPLEMENT
RET ; RETURN - HL UNCHANGED

This subroutine could be assembled using the C OMPUCOLOR II Assembler or
" hand " assembled and entered using the POKE statement in 1;3ASIC .

To enter this subroutine in BASIC , the user must first hit CPU
RESET then re-enter BASIC by using the ESCAPE W sequence . The number
8 1 76 must be entered in response to the MAXIMUM RAM AVAILABLE promp t .
This leaves 1 6 bytes free for the machine language subroutine . The
following program loads the machine language subroutine and demonstrates
the CALL function .

5 REM CHANGE JUMP ADDRESS AT 8203-4 HEX , 820 2 H CONTAINS JUMP
1 0 POKE 3328 3 , 240 : POKE 33284 , 1 5 9
1 5 R EM PROGRAM BYTES AT 9FFO HEX
20 DATA 1 22 , 47 , 87 , 1 23 , 47 , 95 , 1 9 , 20 1
30 F O R AD = 40 944 TO 4095 1
40 READ VL : POKE AD , VL
50 NEXT AD
1 00 INPUT " ENTER X " ; X : Y= CALL (X)
1 1 0 PRINT "-X = " ; Y : GOTO 1 00

7 . 4 String Space Allocation

Understanding how the string space is used is important in deciding
how much string space is necessary for the execution of a program.
Firs t , all strings entered in immediate mode or by the INPUT s tatement
(see Section 4 . 1) are allocated in the string space because the input
line buffer can be modifed by subsequent inputs .

-5 1 -

String functions and the string concatenation operator "+" always
return their resul ts in the string space . Assigning a string a constant
value in a program through a READ or assignment statement does not use
any string space since the string value is part of the program itsel f.
In general , copying is done when a string value is in the input line
buffer , or it is in the string space and there is an active reference to
it by a string variable . Thus , A$ = B$ wil l cause copying if B$ has its
string data in the string space . The assignment A$ = STR$ (1 05) (see
Section 5 . 3 for STR$) will use four bytes of string space to store the
new four character string , " 1 0 5 11 , created by the STR$ function , but the
assignment itself does not cause copying since the only reference to the
new string was created as a temporary reference by the formula
evaluator . The temporary references disappear when the assignment is
done . The copying is dcne in this manner because the string garbage
collection does not allow two references to the same area in .the string
space .

/

-52-

8 . DISK FEATURES

8 . 1 Loading and Saving Programs

Programs and data can be loaded and saved on the COMPUCOLOR II so
that they can be stored and used , edited , or updated in the future . The
general forms of the LOAD and SAVE statements are :

LOAD string expression
SAVE string expression

where the string can be a string variable such as A$ or a quoted literal
string such as "NAME" . There are three FILE types that can be loaded
and saved . They are BASIC source (BAS) , numeric ARRAYS (ARY) , and
memory DATA (DAT) . If no file type is specified , then the default type
is BAS . The BAS file type can be in the form as shown below. Each of
the following examples will save the same BASIC source .

SAVE "TEST" : REM SAVES BASIC SOURCE WITH NAME TEST ON DISK
SAVE "TEST . BAS"
SAVE 11TEST . BAS ; 1 "
SAVE A$: REM WHERE A$ IS A STRING VARIABLE
SAVE " CD 1 : " + A$: REM WHERE 11CD1 : 11 SPECIF IES OPTIONAL DISK

Each of the following examples will cause a BASIC source program to be
loaded .

LOAD "TEST : REM LOADS A BASIC SOURCE PROGRAM BY NAME OF TEST
LOAD " TEST . BAS"
LOAD "TEST . BAS ; 1 "
LOAD " CD 1 : " + A$: REM WHERE 11CD 1 : 11 SPECIF IES THE SECOND DISK
LOAD A$: REM WHERE A$ IS A STRING VARIABLE

The ARY file type can be in the same form as BAS except that ARY must be
in the string after the file name . Also the file name must be a
dimensioned or previously used array by the same first two letters of
the file name . If a one letter variable name is used , then the file
name must be that letter only.

1 0· DIM ST (1 00 , 1 0) , T(3) , TT(1 1 , 1 5 , 3 8)
20 SAVE " STEST . ARY"
30 SAVE 11 T . ARY; 1 "
40 END

The above program wil l save the numbered arrays ST and T . The following
program will cause a (1 00 , 1 0) array to be loaded even though it was
originally set at 1 200 , since 1 200 > 1 0 1 * 1 1 .

-5 3-

-

1 0 DIM ST (1 200)
20 LOAD "STEST . ARY" : REM DIM ST (1 00 , 1 0)
30 END

The DAT file type can be in the same form as ARY . It will look at
the two-byte integer stored in locations 329 40 and 329 4 1 (32940 low byte
and 32941 high byte) as a pointer to memory . It adds 1 to this pointer
and takes the next two bytes in memory as the number of bytes to be
loaded into memory or saved on disk . The locations 32940 and 329 4 1
specify the end o f BASIC memory space , s o all memory above that loca tion
can be used to save data via BASIC using the POKE command . Also note
that only one DAT file may be read in at any one time without changing
the pointers at 32940 and 3294 1 .

Note that it is recommended that programs use the random file
capability of DISK BASIC instead of loading and saving DAT files .

8 . 1 . 1 Program Chaining

A series of different programs can be executed as a single program
by using/ a technique commonly known as program chaining . In DISK BASIC ,
two types of program chaining are possible . The first and easiest
method uses the LOAD statement in combination wi th the RUN command as
follows :

LOAD " PROGRM" : RUN

Executing this statement in ei ther a program or immediate mode causes
the specified BASIC program to be loaded and executed . The RUN command
clears all the variab les from the previous program. A line number can
optionally be specified on the RUN command .

The second method used the LOAD statement in combination with the
GOTO statement as follows :

LOAD " PROGRM" : GOTO line number

Executing this statement in a program causes the speci fied program to be
loaded and executed starting at the specified line number in the GOTO
command . This method does not clear the variables from the previous
program; however , two restrictions must be satis fied to ensure proper
exection of the program . Firs t , the program with the largest source in
the chain mus t be loaded and executed first . Second , string variables
whose data values where part of the program source will contain
incorrect references when subsequent program is loaded because the
program source wil l not be the same as the prev�ous prog·ram . If these
restrictions are satisfied , then the series of programs should execute
properly . Clearly , this second method of program chaining is the least
desirable because of the possible difficulties . See Section 7 . 4 for a
description of how strings are allocated before using this method .

-5 4-

8 . 1 . 2 MENU Programs

With the COMPUCOLOR II it is possib le to create a program that is
loaded and executed by pressing a single key . The AUTO key
automatically loads and executes a BASIC program called MENU . BAS from
the default device which is the internal COMPUCOLOR II disk drive unless
the default device has been changed . (See Chapter 1 0 for further

. details on device and file speci fications .)
The MENU program can be used to run and control a large application

system composed of several programs such as a payroll system . In this
case the MENU program asks which func tion is to be performed next and
directs the execution to the proper program or section of BASIC code.
Similarly , the MENU program can control a number of unrelated
applications by displaying a "menu" of applications accessible on the
diske tte . This technique is used on many of the COMPUCOLOR II diskette
albums . Thus , by depressing the AUTO key , the MENU program is loaded
and executed displaying a 11menu11 of programs . The user simply selects a
program by number or name , and then the MENU program chains to the
desired program. When the selected program is finished it can chain
back to the MENU program.

For example , consider the following three programs :

MENU . BAS
1 0 PRINT "MENU PROGRAM"
20 PRINT
30 PRINT11 1 - PRINT TABLE OF POWERS"
40 PRINT11 2 - PRINT TABLE OF SINE FUNCTIONS"
50 PRINT
60 INPUT " ENTER NUMBER OF DESIRED PROGRAM" ; N
70 N = !NT(N)
80 IF N<1 OR N>2 THEN 60
90 ON N GOTO 1 00 , 200
1 00 LOAD " POWERS" : RUN : REM EXECUTE POWERS
200 LOAD " SINE" : RUN : REM EXECUTE TRIG
999 END

POWERS. BAS
1 0 PRINT "N" , "N.2 " , "N.3 "
30 F OR N = 1 TO 1 0
40 PRINT N , N·2 , N•3
50 NEXT N
60 PRINT
1 00 LOAD "MENU" : RUN : REM RETURN TO MENU

SINE . BAS
1 0 PI = 3 . 1 4 1 5 926 5 : REM BASIC ROUNDS TO APPROX . 7 PLACES
20 P,RINT "DEG" , "SINE"
30 PRINT
40 FOR DEG = 0 TO 360 STEP 1 5
5 0 HAD = DEG * PI/ 1 80
60 PRINT DEG , SIN(RAD)
70 NEXT DEG
80 PRINT
1 00 LOAD "MENU" : RUN : REM RETURN TO MENU

-55-

To try this example the user must first enter and save each of the
three programs , being careful to remember to reini tialize BASIC b efore
entering a new program after saving the old one . After saving all three
programs the AUTO key must be struck . This causes MENU to be loaded and
executed . MENU then asks for either 1 or 2 and executes the selec ted
program . Note that these programs return back to the MENU program after
they have performed their specified func tion . This makes the MENU
program an effective tool for control ling and demonstrating a system or
diskette of programs .

8 . 2 Using the File Control System Through BASIC

The PRINT STRING command preceded by PLOT 27 and PLOT 4 or PLOT 6 8
{ ESC , D for FCS DISK) will enable the user to exercise all o f the FCS
disk commands through BASI C . Therefore , every command available to the
File Control System is also availab le to BASIC , by letting the string
become the FCS command . The following examples show how to retrieve a
disk directory through BASI C . (For a description of the PLOT statement ,
see Section 9 . 1)

or

or

1 0 PLOT 27 , 4
20 PRINT "DIR"
40 END

1 0 PLOT 27 : PRINT11DDIR11

10 PLOT 27 : PLOT 6 8 : PRINT A$: REM WHERE A$ IS A
20 REM STRING VARIABLE EQUAL TO DIR .

If the directory of the disk were as follows :

TEST . ARY ; 0 1
TEST . ARY; 0 2

then the BASIC program below would delete version 1 of the TEST. ARY
file , rename version 2 to version 1 , update the array , and save it as
version 2 so it can be used again .

5 DIM TEST (1 000)
1 0 LOAD 11TEST . ARY ; 2 "
20 PLOT 27 : PLOT4 : REM SELECT FCS MODE
30 PRINT "DELETE TEST. ARY ; 1 "
50 PRINT " RENAME TEST . ARY ; 2 TO TEST . ARY1 11
60 PLOT 27 : PLOT 27 : REM SELECT VISIBLE CURSOR MODE
80 : REM UPDATE TEST ARRAY
90 SAVE " TEST . ARY"

All string functions that are available to BASIC can be used in the
PRINT statement containing the FCS command .

-56 -

To escape from the File Control System and return to one of the
other CRT modes , an escape sequence must be given; such as ESC , ESC for
visib le CRT cursor mode . The FCS responds only to printing ASCII
characters and the following control codes :

1 1 ERASE LINE
1 3 CARRIAGE RETURN
26 CURSOR LEFT
27 ESCAPE

All other control codes will cause an FCS error if they appear in a
string . A complete description of the F CS commands appears in Chapter
1 0 and Appendix B . 1 .

8 . 2 . 1 Loading and Saving Displays in BASIC

The FCS interface with BASIC makes it very eas� to load and save
screen displays . To save displays generated by a BASIC program, the
COMPUCOLOR II should first be in page mode (see Section 9 . 4) ; otherwise ,
if the screen has scrolled at all then the saved display will be wrapped
around . After the display has been generated , the user simply includes
a sequence of statements similar to that shown below.

900 PLOT 27 , 4 : REM ENTER FCS
9 1 0 PRINT " SAVE SCREEN . DSP 7000 1 00 0 11
920 PLOT 27 , 27 : REM RETURN FORM FCS

Line 9 1 0 saves a copy of screen refresh memory which is located from
7000 HEX to 7FFF HEX in a file called SCREEN . DSP . The display can now
be loaded at any time by executing the following sequence of
statements .

1 000 PLOT 1 2 : REM UNROLL SCREEN MEMORY BY ERASE PAGE
1 0 1 0 PLOT 27 , 4 : REM ENTER FCS
1 020 PRINT"LOAD SCREEN . DSP" : REM LOAD DISPLAY
1 030 PLOT 27 , 27 : REM RETURN FROM FCS

These two sequences can be tailored to fit any needs by simply changing
the line numbers and name of the file containing the display .

Displays that are generated in CRT mode can also be saved using
BASI C . Before creating a display , the user should enter the following
one line BASIC program .

0 PLOT 27 , 4 : PRINT "SAVE SCREEN . DSP 7000 1 00 0 11 : END

When this line is executed it will save the current display . After the
display is finished , the cursor should be moved to a section of the
display on the left-hand side that is composed of a few short lines of
b lanks . Set the background color and foreground colors to the
background color of the blanks (see Seeton 9 . 2 � and then re-enter BASIC
by typing ESC E. A READY message will be returned but it wil l be
invislble because the foreground and background colors are the same .
Next type RUN . The RUN command executes the one line BASIC program that
saves the display .

-57-

8 . 3 Introduction to Random Files

COMPUCOLOR II DISK BASIC has three statements which implement a
powerful random access file capability . The F ILE statement performs
various functions including creating , opening and closing .random files .
The GET and PUT statements read , write , and update records in a random
file .

Random files are organized into physical blocks containing a fixed
number of fixed length records . If a physical block is not a multiple
of 1 28 , then the excess length up to the next multiple of 1 28 is not
used . The blocking factor and record size of a file can be changed to
allow different types of access . For example , a 1 00 record file of 80
byte records with a blocking factor of 3 will use only the first 240
bytes of 256 available in 2 disk sectors . The last 1 6 bytes are unused .
Logical records do not cross physical block boundarie s . Thus , for the
1 00 record file 2*34 =6 8 sectors are needed . In this case a 1 0 2 record
file could have been allocated in the same amount of disk space .

There can be up to 1 27 random files open simultaneously subject to
memory limitations . Memory space for files is allocated dynamically
from the user ' s workspace . Each file can contain from 1 to 32767
records and the record size range is 1 to 32767 bytes . The record size
must be small enough to fit into the user ' s workspace giving a prac tical
maximum of 30000 bytes . The default filename type for random files is
. RND .

8 . 4 The FILE Statement

The basic form of the FILE statement is :

FILE "string expression" , extra information

The F ILE statement is a versatile statement that has the ability to
perform a number of functions . The first charac ter of the string
expression determines what the FILE statement will do . The following
sections describe the F ILE statement ' s uses and functions .

8 . 4 . 1 Random File Creation

The Random File Creation statement is of the form :

F ILE "N" , filename , records , record size , blocking factor

where ' filename ' is a string expression containing a valid F CS filename ;
' records ' is the number of logical records (1 -327 67) ; ' record size ' is
the size in bytes of logical records (1 -32767) ; and ' blocking factor ' is
the number of logical records per physical block (1 -255) .

The specified file must not exist . If no version number is
specified , then FCS wil l choose the next larger version number . The
user is responsible for choosing proper values of the parameters . Any
of the file speci fications can be overridden when the file is opened
with the FILE "R" statement . For example :

FILE "N" , " CHECKS" , 200 , 32 , 8

-58-

creates a file containing 200 32-byte records with 8 records per b lock .

8 . 4 . 2 Random File Open

The form of the Random File Open statement is :

FILE " R" , file , name , buffers< ; records , rec size , blocking fac tor>

where ' file ' is the logical number of the file (1 - 1 27) , ' name ' is a
string expression containing a valid FCS filename , and ' buffers ' is the
number of buffers in memory (1 -255) .

The items between the angle brackets are optional and redefine the
file size . The elements are : ' records ' , which is the number of logical
records (1 -3 2767) ; ' reo size ' , which is the size in bytes of logical
records (1 -3 2767) ; and ' blocking factor ' , which is the number of logical
records per physical block (1 -255) .

It is possib le to open any
th� F ILE "N" statement .

by overriding the number of
factor , but the directory

the number of records , record

The specif�ed file must already exis t .
type o f fil e , but they are best created with
Files not created in BASIC can be accessed
records , the record size , and the blocking
will not contain valid information about
size , or blocking factor . For example :

F ILE " R" , 1 , "CHECKS11 , 2

opens the file " CHECKS . RND" and allocates enough buffer space for 2
physical blocks or 1 6 records .

8 . 4 . 3 Random File Close

The Random File Close statement is of the form :

FILE " C " , file 1 < , • • • , file N>

where ' file ' is the number of the file to be closed . The items be tween
the angle brackets are optional , and merely describe the format for
closing more than one file at a time .

Each file that has been opened must be closed to ensure that the
buffers in memory are written to the disk if they have been modified .
Closing a file frees up its buffer space in memory . For example :

FILE " C " , 1

closes file 1 •

8 . 4 . 4 Dump File Buffers

The form of the Dump File Buffers statement is :

FILE "D" , file 1 < , • • • , file N>

where ' file ' is the number of the file (1 - 1 27) ; and the optional items
be tween the angle bracke ts are other files that can be included in the

-59-

same statement .
This statement writes any modified buffers to the disk for the

specified files . It can be used to ensure that modifications to a file
are recorded immediately . It is similar to F ILE "C" except that the
buffer space is not freed up and the file remains ope n . For example :

FILE "D" , 4 , 6

writes any modified buffers back to the disk for files 4 and 6 .

8 . 4 . 5 File Attributes

The form of the File Attributes statement is :

FILE "A" , file , cur record < , records , rec size , blocking factor>

where ' file ' is the numb er of the file (1 - 1 27) ; and ' cur record ' is the
variab le that is assigned the most recently accessed record number .
The items between the angle brackets are optional and include ' records ' ,
which is the variab le that is assigned the number of records in the
fil e ; 1 rec size ' , which is the variable that is assigned the record size
in bytes ; and ' b locking factor ' , which is the number of logical records
per physical b lock (1 -255) .

This statement is used when the file size and other attributes of a
file are unknown . For example , the attributes of file 1 may be
determined as follows :

FILE "A" , 1 , CR , NR , RS, BF

8 . 4 . 6 File Error Trapping

The form of the File Error Trapping statement is :

FILE "T" < , line number>

where the optional line number is a line number in the range 0 to
65529 . If the file "T" statement is executed · with the line number
specified , then when a disk error occurs it will be trapped and
execution wil l continue at , the specified line number . All information
about nested GOSUB ' s and FOR-NEXT loops will be lost . In most cases
this wil l not be a prob lem. In the other cases , assuming good
programming practices , the disk error will probably be a hardware

· failure which requires some type of special recovery procedure. If the
line number is not specified , then the error trapping facil ity will be
disabled . For example :

FILE "T" , 32000

causes the program to go to line 32000 whenever a disk error occurs .

-60-

8 . 4 . 7 File Error Determination

The form of the File Error Determination statement is :

FILE "E" , fil e , error , line number

where ' file ' is the file number at the time of the error (this number
may be incorrect for bad file name errors and errors within the F ILE "N"
statement) ; ' error ' is the disk error number (for explanations see
Appendix A . 6) ; and ' line number ' is the line number in which the error
occurred .

This statement lets the user de termine what type of disk error
occurred . It is used in conj).mction with the F ILE "T" s tatement . F or
example :

FILE "E" , FL , ER , LN

returns the file , error , and line number of the current random file
error .

8 . 5 The GET Statement

The GET statement is of the form:

GET file < , record < , first>> ; variable list

where ' file ' is the logical file number (1 - 1 27) ; and the ' variable lis t '
contains one or more of the following entries:

numeric
string

variable - reads 4 bytes into the numeric variab le ;
variable [byte count] - reads the specified number of
bytes into the string variable . The byte count range
is 1 to 255 .

The items between the angle brackets are optional and include ' record ' ,
which is the record number to be read (if 0 or omitted , then the record
number is 1 greater than that used for the last access to the file) ; and
' first ' , which is the first byte of the record to be read (1 -record
size) . If no value is given for ' first ' , then first defaults to 1 .

The GET statement all ows a file to be randomly accessed . By using
the first field , different parts of the record can be immediately
accessed . F or example :

�ET 1 , R ; ACCOUNT , AMOUNT , DATE , PAYEE$[20]

will read ACCOUNT , AMOUNT , and DATE as numeric entries , and PAYEE as a
20 byte string .

-6 1 -

8 . 6 The PUT Statement

The PUT statement is of the form:

PUT file < , record < , first>> ; expression list

where ' file ' is the logical file number (1 - 1 27) ; and the ' expression
list ' contains 1 or more of the following entries :

numeric expression - writes 4 bytes containing the value of
the expression ;

string expression [byte count] - writes the specified number
of bytes . The value of the string expression is
truncated or blank filled on the right . The byte
count range is 1 -255 .

Items between the angle bracke ts are optional and include : ' record ' ,
which is the record number to be written or updated (if 0 or omitted ,
then the record number is 1 greater than that used for the last access
to the file) ; and ' first ' , which is the first byte of record to be
written (1 -record size) . If no value is given, then first defaults to
1 .

The PUT statement allows random records to be written or updated .
For example :

PUT , 1 , R , 1 3 ; "MORTGAGE COMPANY11 [20]

updates 20 bytes of record R star ting at the 1 3 th byte .

8 . 7 Improving File Access

The random files in DISK BASIC are oriented towards fast random
reads and upd ates . Sequential file input and output can easily be
simulated ; however , there is a time penal ty for sequential output
because the PUT statement updates information on a record . The file
accessing time in a program can often be greatly reduced if the program
takes advantage of the flexibility offered .

The file accessing scheme in DISK BASIC is different from the
random accessing scheme commonly used in most micr.ocomputers . When a
record is accessed that is not present in one of the buffers in memory ,
the physical block containing the logical record is read into memory in
an unused buffer or , if all buffers are in use , the least recently used
(LRU) buffer. If the least recently used buffer has been modified , it
is rewrit ten to disk before the next block is read into the buffer.
This type of a buffer management scheme is very similar to the LRU
virtual memory paging schemes used on large computers .

The first method of improving file access is by increasing the
number of file buffers allocated in the F ILE " R " statement . Changing
this number from 1 to a larger number does not alter the results of
execution; it only alters the number of times the disk has to be
physically accessed . The difference in time can be quite substantial .
However , for sequential access or random access which uniformly accesses
all parts of a l arge file there is little advantage to be gained by

-62-

increasing the number of buffers beyond 1 .
The second method of improving file access is by varying the record

size and blocking factor of a file . Ideally , the record size should be �

a power of 2 . By choosing an appropriate blocking factor the b lock size
will be a multiple of 1 28 . For example , a 32 byte record can be blocked
4 , 8 , or 1 2 , giving block sizes of 1 28 , 256 , or 384 bytes , r.especti vely.
For sequential access a blocking factor of 1 allocates 1 record to a
physical block . Thus , to read records sequentially , 1 physical access
and disk read is necessary for each record . With a blocking factor of
8 , physical disk access is only necesary for every 8 records read , which
is 1 / 8 as many disk accesses as necessitated by a blocking factor of 1 .

If the record sizes are not a power of two , the b locking factor
should be chosen carefully. For example , with 80 byte records a
blocking factor of 1 will waste 48 bytes of disk space for �each record
because the 80 byte record is contained in a 1 28 byte disk sector . By
using a blocking factor of 3 , only 1 6 bytes (256-3 *80) wil l be was ted
for every 2 1 28 byte sectors . Again , wi th a blocking factor of 8 , 6 40
bytes are used with no wasted space because 5 disk sec tors hold exactly
6 40 bytes . Whether or not to choose 1 , 3 , or 8 should be determined by
the type of application for which the file is used . If the program is
large and uses most of the workspace , either 1 or 3 would be bes t . If
the program is small , allocating 678 (34+4+6 40) bytes may be quite
acceptable and improve the speed of the program . Choosing the best
values for the number of buffers , record size , and blocking fac tor is
often difficul t . The user is following a reasonab le guideline if he
allocates 1 buffer for sequential files with a larger blocking factor
and more buffers with smaller blocking fac tors for random file s . For
often used applications a little experimentation and fine tuning of the
parameters can improve the disk access time .

8 . 8 Storage Requirements

When random files are used , they are allocated from the user ' s free
workspace . The storage requirements in bytes are as follows :

where

error trapping - 1 0 bytes

open files -

4+30+BUF * (4+1 28*INT((RECSIZ*BLKFAC+1 27) / 1 28)) bytes

BUF = the number of allocated physical block buffers ,
RECSIZ = the number of bytes per record ,
BLKFAC = the number of records per block .

Thus , opening a file wi th 80 byte records and a blocking factor of 3 and
1 buffer requires 34 + 1 * (4+256) = 294 bytes . With 4 buffers the
requirement is 34 + 4 * (4+25 6) = 1 074 bytes .

-63-

/

g , COLOR , GRAPHICS , AND OTHER TERMINAL FEATURES

9 . 1 The PLOT Statement

The PLOT Statement
expression to the screen.
�ollows :

PLOT expression

or

is used to
The form

output
of the

the 8 bit value of an
PLOT statement is as

PLOT expression, expression , • • • , expression

The expressions in the expression list must evaluate to a quantity in
the range 0 to 255 . Other values will cause a CF error .

F or example , the following statement will cause the letters ABCDEF
to be displayed on the screen.

PLOT 65 , 66 , 6 7 , 6 8 , 6 9 , 70

The PLOT s tatement is usually used to send control codes , escape code s ,
and other graphics information t o the screen . For further examples , see
the following sections in this chapter , and for information about CRT
commands and ASCII codes , see Appendices C , E, and F .

9 . 2 Color

The color displays that can be achieved on the COMPUCOLOR II are an
important feature of the machine . The color controls are easy to
operate and add a new dimension to tradi tional programming .

Both the foreground and background can be set to a desired color .
The foreground can be made to blink , and in addi tion , charac ters may be
either single or doub le height .

Color , blink and charac ter size can each be set in one of two ways .
The first method involves the use of the color and special keys . To set
the background color , the BG ON key is pressed . Then the ac tual color
is set by simultaneously striking the CONTROL key and the letter key
corresponding to the desired color. They are as follows :

BLACK :
RED :
GREEN :
YELLOW :

p
Q
R
s

BLUE : T
MAGENTA : U
CYAN : V
WHITE : W

On the deluxe and extended keyboards , the color keys are in a
separate pad and are simply struck to select color .

-64-

f

The foreground can be set by depressing the FG ON key and selec ting
a color as for the background .

The BLINK ON key sets the blink in motion and the BL/ A7 OFF key
turns it off. The doub le-height characters can be set by the A7 0N key
and small charac ters are reset by the BL/A7 OFF key. · Because this key
controls both blink and charac ter height , if the user wishes to turn the
b link off while using the larger characters , and continue typing in
large charac ters , the BL/ A7 OFF key and the A7 ON key must be struck in
immediate succession.

While . these codes can be used in the CRT mode to test color
combinatons and display appearances , etc . , the charac ters will only be
accepted in BASIC if they are contained in quoted strings or REMARK
statements . I f not so contained , they will cause a syntax error (SN) �

Color can be selected without being contained in a quoted string by
the second method of setting color , blink and charac ter height . This is
done through the use of the PLOT statement , as shown below :

PLOT 29
PLOT 30
PLOT 3 1
PLOT 1 4
PLOT 1 5

(sets foreground color)
(sets background c9lor)
(sets blink on)
(sets large characters)
(sets blink and large charac ters off)

The individual colors are selected by PLOT statements using the internal
code of each color key , as shown below :

PLOT 1 6
PLOT 1 7
PLOT 1 8
PLOT 1 9

(black)
(red)
(green)
(yellow)

PLOT 20
PLOT 2 1
PLOT 22
PLOT 23

(blue)
(magenta)
(cyan)
(white)

Because blink off
same code , retaining
will require PLOT 1 5
PLOT commands can
screen output .

and standard charac ter height are controlled by the
doub le character height while turning off the blink
and PLOT 1 4 statements in immediate sequence . The
be used in a BASIC program to set the color of the

The PLOT character set , BLINK , BACKGROUND COLOR , and F OREGROUND
COLOR can also be selec ted by means of the CCI Control Code or PLOT 6
statement . The general form in BASIC is as shown :

• PLOT 6 , number

where number
visible CCI
bits long and
Appendix C . 2)

must be an integer be tween 0 and 255 representing the
status . This number is represented in binary up to eight
arranged in a table as shown below. (Also shown in

A7 A6 A5 I A4 I A3 A2 I A1 I AO

BACKGROUND FOREGROUND
PLOT BLINK

BLUE I GREEN I RED BLUE I GREENI RED

-65-

The foreground and background colors
television, by combinations of the blue ,
When the binary number is placed in the
position turns that bit on. The formula
number in decimal is :

are formed , as in a color
red , and green color guns .
eight bit location , a 1 in any
for determining the desired

PLOT* 1 28 + BLINK*64 + BACKGROUND*8 + FOREGROUND

The program below illustrates the various results that can be achieved
with the PLOT 6 command .

1 0 PLOT 6 , 6 : REM SET CYAN FOREGROUND AND BLACK BACKGROUND
20 PRINT " PLOT(0-1) , BLINK(0 - 1) , BCKGRD (0-7) , FORGRD (0-7) : " ;
25 INPUT " " ; PL , BL , BG , FG
30 PLOT 6 , PL*1 28+BL*64+BG*8+FG
40 REM 30 SETS THE COLOR INFORMATION YOU SELECTED
50 PRINT " THIS IS WHAT YOU SELECTED " ; : PLOT6 , 6 : PRINT
60 REM RESET COLOR BEFORE LINEFEED
70 GOTO 20

9 . 3 Special Charac ters

The COMPUCOLOR II has 64 special characters which are actually two
groups of 3 2 special characters . A group is selected depending upon the
condition of the F lag Bit . If the Flag Bit is off , then the ASCII codes
from 96 to 1 27 are not changed when they are placed in the CRT refresh
memory . If the F lag Bit is on , then these codes have 96 sub tracted from
them before they are replaced in the CRT refresh memory . Therefore ,
they are mapped into 0 to 3 1 wi thin the refresh memory .

The characters in the range 96 to 1 27 are generated by changing the
shift of the alphabetic characters @ , A , • • . , Z , [, \ ,] , A ' and _. If
the CAPS LOCK key is down , then the SHIFT key will also have to be
depressed to generate these characters . If the CAPS LOCK key is up ,
then these special characters are generated whenever an alphabe tic key
is struck .

The condition of the F lag Bit is changed by depressiHg either the
FG ON/FLAG OFF key or the BG ON/FLAG ON key . Thus , if the FG ON/FLAG
OFF key is struck , the charac ters in columns 6 and 1 in the COMPUCOLOR
II Character Set (shown in Appendix F) are displayed whenever ASCII
codes in the range 96 to 1 27 ar received . If the BG ON/FLAG ON key is
struck , the charac ters in columns 0 and 1 are selec ted .

In BASIC the two sets of special characters can be selected as
follows :

PLOT CODE

PLOT 29
PLOT 30

KEY

FG ON/FLAG OFF
BG ON/FLAG ON

CHARACTER SET

COLUMNS 6 AND 7
COLUMNS 0 AND 1

The COMPUCOLOR II has an alternate set of 256 charac ters . These
charac ters are used for the graphics plot modes where each character
position is composed of eight plot b locks - four high by two wide .
These plot b locks can also be accessed through the charac ter plot via

-6 6 -

color pad mode entered by
color keys to intensify

. character . The one to one
pad on the extended and
b locks is shown below.

the ESC B sequence . This mode uses the eight
each of the eight plot blocks within a
correspondence between the 4 x 2 color select
deluxe keyboards and the 4 x 2 character plot

CHARACTER PLOT BLOCK ARRAY WITH CORRESPONDING COLOR CODES

BLACK BLUE

RED MAGENTA

GREEN CYAN

YELLOW WHITE

This mode is designed especially for use by the keyboard to simplify the
drawing of graphs or the correcting of graphs . Once this mode is entered
a block at the top right hand corner of the present cursor position can
be intensified by depressing the BLUE key at the top right hand corner
of the color selection pad or CONTROL T (20) .

·once a plot block is intensified , any other plot block in the same
character positon can also be intensi fied since the cursor does not
automatically advance . If a color key is corresponding to an
intensified plot block is pressed , the plot block is turned off . This
allows plot blocks to be erased . After all the desired plot blocks have
been intensified or extinguished , the cursor can be moved using the
cursor control keys without leaving this mode . In fac t , all of the
control codes are effective while in this mode except for the color
select control codes , and any of the ASCII text charac ters (32 to 1 27)
can be entered and displayed . Any code that requires a two key or more
sequence (such as CURSOR X-Y , CCI , and ESC) terminates this mode . I t
should b e noted that the ASCII text characters when entered and
displayed advance the cursor . Therefore , when a charac ter position has
been used to display plot b locks , a cursor command must be given to
advance the cursor to the next charac ter positon.

9 . 4 Cursor Controls

The COMPUCOLOR II has two cursor modes availab le to the user . The
most commonly used mode is the visible cursor mode where the blinking
cursor on the screen shows the current visible cursor posi tion . In this
mode all the cursor control features of the COMPUCOLOR II are availab le .
A second cursor mode , called the blind cursor mode , allows the use o f a
second invisible cursor with only XY cursor position allowed . The two
modes are described in the following sections .

9 . 4 . 1 Visible Cursor Mode

In the visible cursor mode the following PLOT statements move the
visible cursor on the screen:

-67-

•

PLOT 1 0 CURSOR DOWN I LINEFEED
(moves the cursor 1 space down)

PLOT 25 CURSOR RIGHT
(moves cursor one space to the right)

PLOT 2 8 CURSOR UP
(moves cursor one space up)

PLOT 26 CURSOR LEFT
(moves cursor one space to the left)

PLOT 8 HOME
(moves cursor to topmost left of screen)

PLOT 9 TAB
(moves cursor to start of next print zone)

The X , Y position of the visible cursor can be changed using the
CURSOR X , Y control code sequence or the following PLOT statement :

PLOT 3 , X , Y

where X and Y are the desired X , Y coordinates . The range for X is 0 to
64 and the range for Y is 0 to 3 1 . Where X=O and Y=O is the HOME
position at the upper left hand corner of the screen . The X coordinate
determi.nes the column posi tion and the Y coordinate determines the line
on the screen .

I f the cursor i s posi tioned at X=6 4 , then
cursor wil l disappear . But if a charac ter
positioned at the beginning of the line specified
then reappears in character posi tion (X= 1) . Any
forces the cursor to reappear at the proper
character position 0 , line Y+ 1 .

the blinking visible
is typed , it will be
by Y+ 1 , and the cursor

cursor movement command
position relative to

If the X value is greater than 6 4 , then the b lind cursor
address ing mode is entered .

Page mode , which is entered from the keyboard via ESC X , writes
characters left to right , and does not scroll the screen . From BASIC it
is entered with a PLOT 27 , 24 statement .

Scroll mode , which is entered via ESC K , writes left to right and
scrolls the screen for a continuous readou t . It is entered i n BASIC by
PLOT 27 , 1 1 .

Vertical mode , which is entered via ESC J writes top to bottom in
one column only. It does not scroll the display . This mode can be
reached through BASIC by the PLOT 27 , 1 2 statement .

ERASE PAGE code replaces the contents of the entire screen with
spaces that have the same color and composi te status as the present
visib le CCI status . Both the visible and b lind cursors are posi tioned
at HOME . In BASIC a PLOT 1 2 erases the screen .

The ERASE LINE code does a . carriage return and replaces the line
containing the visible cursor with spaces having the same color and
composite status as the present visib le CCI status . The cursor is sent
to the beginning of the line . The current line is erased through BASIC
by PLOT 1 1 . The following program illus trates the use of, some cursor

-6 8-

controls .

1 0 DEF FNR(X) = INT (X*RND (1))
20 FOR I = 0 TO 3 : READ D(I) : NEXT I
30 DATA 1 0 , 25 , 28 , 26 : REM CURSOR CONTROL VALUES
40 PLOT 6 , 0 , 1 2 , 27 , 24 : REM ERASE PAGE AND SET PAGE MODE
50 PLOT 3 , FNR(6 4) , FNR(32) : REM SELECT RANDOM STARTING POINT
60 FOR I = 1 TO 1 000
70 PLOT 6 , (FNR(7) +1) *8 : REM SET VISIBLE BACKGROUND COLOR
80 PLOT 20 , 26 : REM OUTPUT SPACE , THEN BACKSPACE
90 PLOT D (FNR(4)) : REM OUTPUT A RANDOM DIRECTION
1 00 NEXT I
1 1 0 PLOT 6 , 2 , 8 : REM SET COLOR AND RETURN HOME
1 20 END

9 . 4 . 2 Blind Cursor Mode

The b lind cursor mode can be entered in two ways . The first is by
using the CURSOR X , Y control sequence . If the X value is 65 or larger ,
then the terminal ignores this as the visible cursor X value and sends
the unit into the bl ind cursor addressing mode . Once in the b lind
cursor X , Y addressing mode , three addi tional bytes must be sent . They
are the b lind cursor X value , the blind cursor Y value , and the blind
status word . The b lind X value must be in the range 0-63 and the b lind
Y value must be in the range 0-3 1 . The blind status word has the same
format as that required for the CCI code (PLOT 6) as described in
Sec tion 9 . 2 .

The Blind A7 Bit will be set on by sending values from 1 28 to 255
instead of 6 5 to 1 27 when going from the visib le cursor X , Y mode to the
blind cursor X , Y mode . The Blind A7 Bit is set off when a value from 65
to 1 27 is used .

It should be noted that the X and Y cursor values are masked to
0-63 ad 0-3 1 respectively.

After receiving the five byte blind cursor X , Y sequence , the
terminal is left in the blind cursor mode for whatever input device
caused the mode to be entered . After CPU RESET , the keyboard and
RS-232C serial port are placed in visible. cursor mode . If the keyboard
causes the b lind cursor XY to be addressed , then the keyboard will be
left in the b lind cursor mode while the RS-232C serial is still in the
visib le cursor mode . This allows the keyboard and the RS-232C to use
two different cursors .

It is important to note that most of the control codes affect only
the visib le cursor mode including all of the .cursor positioning codes
except , of course , CURSOR X , Y , which can affect both modes , and ERASE
PAGE which resets both the visib le and blind cursor to the home posi tion
(0 , 0) . The setting of the ,Flag Bit is used by both the blind and
visible cursor modes to select the proper special charac ters .

The blind cursor mode can also be entered by using the ESC A
sequence , and ESC ESC returns the input to the visible cursor mode
without changing the cursor address , composite color status word , or A7
Bit of the two cursor modes .

In BASIC the blind cursor X , Y addressing is used as fol lows :

PLOT 3 , BC , X , Y , CL

-6 9-

where BC is in the range 65 to 1 27 for A7 OFF and small characters , and
from 1 28 to 255 for A7 ON and large charac ters . X and Y are the cursor
positions , and CL is the color status word (0 -255) . Blind cursor mode
can be exited and visible cursor mode entered by :

, PLOT 27 , 27 (ESC ESC)

and blind cursor mode can be re-entered b y :

PLOT 27 , 1 (ESC A)

With the two cursor modes , the COMPUCOLOR II offers a great deal of
flexibility _ as a color display device and a terminal . The blind cursor
mode is useful for generating displays in character mode without the
cursor interfering with the display . For example , the differences are
shown by the hunter and turkey program below :

0 REM TURKEY AND THE HUNTER
1 0 REM VISIBLE AND BLIND CURSOR DEMONSTRATION
20 PLOT 6 , 2 , 1 2 : INPUT "VISIBLE OR BLIND CURSOR (V/ B) ? " ; A$
30 BC:MID$ (A$, 1 , 1) = "B" : VC:MID$(A$, 1 , 1) = "V"
40 IF BC+VC<>-1 THEN 20
50 REM DRAW BORDER - AROUND SCREEN
60 PLOT 27 , 24 : REM PAGE MODE
6 1 PLOT 1 5 : REM A7 OFF - SMALL CHARACTERS
62 PLOT 6 , 0 : REM SET COLOR - BLACK FG/ BLACK BG
6 3 PLOT 1 2 : REM ERASE PAGE
70 PLOT 6 , 1 5 : REM SET COLOR - WHITE FG/ RED BG
7 1 FOR I = 1 TO 6 4 : PLOT 32 : NEXT : REM DRAW TOP LINE
72 PLOT 3 , 0 , 3 1 : REM MOVE CURSOR TO BOTTOM LINE
73 FOR I= 1 TO 6 4 : PLOT 32 : NEXT : REM DRAW BOTTOM LINE
74 PLOT 27 , 1 0 : REM WRITE VERTICAL MODE
75 PLOT 8 : REM MOVE CURSOR TO HOME
76 FOR I= 1 TO 3 2 : PLOT 3 2 : NEXT : REM DRAW LEFT SIDE
7-7 PLOT 3 , 6 3 , 0 : REM MOVE CURSOR TO TOP RIGHT
7 8 F OR I= 1 TO 32 : PLOT 32 : NEXT : REM DRAW RIGHT SIDE
79 PLOT 27 , 24 : REM PAGE MODE
90 PLOT 3 , 6 4 , 0 : REM MOVE BLINKING CURSOR OFF SCREEN
1 00 REM SET UP GAME PARAMETERS
1 1 0 HX: 1 : HY= 1 : REM HUNTER INITIAL POSITION
1 20 TX=32 : TY= 1 6 : REM TURKEY INITIAL POSITION
1 30 TS:2 : REM TURKEY SPEED
1 50 HC=3 9 : TC= 1 5
1 80 REM DEF INE FNR TO RETURN RANDOM INTEGER IN RANGE -X TO X
1 90 DEF FN R(X) = -X+INT((2*X+ 1) *RND(1)) .
200 REM MOVE CURSOR TO TURKEY ' S OLD POSITION
20 1 IF VC THEN PLOT 3 , TX , TY , 6 , 0 : REM VISIBLE
202 IF BC THEN PLOT 3 , 1 27 , TX , TY , O : REM BLIND
2 1 0 TX:TX+FNR(TS) : REM CHANGE TURKEY X POSITION
220 TY:TY+FNR(TS) : REM CHANGE TURKEY Y POSITION
230 IF TX< 1 OR TX>6 2 OR TY< 1 OR TY>30 THEN 1 000 : REM ESCAPE !
240 PLOT 3 2 : REM CLEAR TURKEY ' S LAST POSITION
250 REM MOVE CURSOR TO TURKEY ' S NEW POSITION

-70-

25 1 IF VC THEN PLOT 3 , TX , TY , 6 , TC : REM VISIBLE
252 IF BC THEN PLOT3 , 1 27 , TX , TY , TC : REM BLIND
260 PLOT ASC("T") : REM OUTPUT TURKEY SYMBOL
300 REM MOVE CURSOR TO HUNTER ' S OLD POSITION
30 1 IF VC THEN PLOT 3 , HX , HY , 6 , 0 : REM VISIBLE
302 IF BC THEN PLOT 3 , 1 27 , HX , HY , O : REM BLIND
3 1 0 REM RANDOM SELECT HUNTER ' S MOVE IN X OR Y DIRECTION
320 IF RND (1) > (ABS(TY-HY)+1) / (ABS(TY-HY) +ABS(TX-HX) +2) THEN5 00
400 HY: HX+SGN (TY-HY) : REM MOVE TOWARD TURKEY IN Y DIRECTION
4 1 0 GOTO 600
500 HX= HX+SGN(TX-HX) : REM MOVE TOWARD TURKEY IN X DIRECTION
600 PLOT 3 2 : REM CLEAR HUNTER ' S LAST POSITION
700 REM MOVE CURSOR TO HUNTER ' S LAST POSITION
70 1 IF VC THEN PLOT 3 , HX , HY , 6 , HC : REM VISIBLE
702 IF BC THEN PLOT 3 , 1 27 , HX , HY , HC : REM BLIND
7 1 0 PLOT ASC (" H") : REM OUTPUT HUNTER SYMBOL
720 IF HX=TX AND HY= TY THEN 2000 : REM HUNTER CATCHES TURKEY
800 GOTO 200
1 00 0 REM TURKEY ESCAPES
1 0 1 0 PLOT 27 , 27 : REM VISIBLE CURSOR MODE
1 0 20 PLOT 6 , 2 : REM SET COLOR - GREEN FG/ BLACK BG
1 0 30 PLOT 8 : REM CURSOR HOME
1 0 40 PRINT· " TURKEY ESCAPES I I I I
1 050 GOTO 3000
2000 REM HUNTER CATCHES TURKEY

"

20 1 0 PLOT 27 , 27 : REM BLIND CURSOR MODE
20 20 PLOT 6 , 2 : REM SET COLOR - GREEN F G/ BLACK BG
2030 PLOT 8 : REM CURSOR HOME
20 40 PRINT "GOBBLE GOBBLE II

3000 FOR I= 1 TO 1 000 : NEXT : REM DELAY FOR A WHILE
30 1 0 RUN

9 . 5 Vector Graphics

The vector graphics capability of the COMPUCOLOR II allows the user
to draw almost any desired display . The vector graphics are enab led by
entering the graphic plot mode by depressing CONTROL B (binary 2) from
the keyboard when in the CRT mode , or by executing PLOT 2 in BASIC .
While in the graphic plot submode the user can choose from sixteen (1 6)
plot submodes that perform a variety of graphic functions . The initial
plot submode is the XY Point Plot mode . In this mode the user can turn
on and off individual plot blocks on .the screen . Other plot submodes
can easily be entered by a binary code from 240 to 255 .

An additional feature is availab le to allow a graphic plot to be
erased by simply setting the FLAG bit on before entering the plo t mode .
This causes a logical XOR function to be used in se tting the plot
b locks . Thus , if the same point is plotted a second time , it is erased .
Also , any plot submode may be entered from any other plot submode except
Character Plot mode . The various submodes and their interactions are
explained in detail below .

Colors may be defined on a character by charac ter basis only and
the color of an individual plot block as well as other intensi fied plot
b locks within a character will be the most recent color de fined when a

-7 1 -

new plot block within that character is turned on . To change color , it
is necessary to exit the current plot submode , set the new color , and
re-enter the plot mode .

The character grid on the screen is 6 4 charac ters wide and 32
characters high . The zero reference point for all plotting is the lower
left hand corner of the screen. Each charac ter is further subdivided
into 8 plot blocks -- 2 blocks wide and 4 blocks high . This gives a 1 28
by 1 28 grid of plot blocks which may be individually se t . All plot
submodes operate on this grid size and have the same reference point
(0 , 0) . Positive directions are up and to the right , and negative
directions are down and to the left .

All plot submodes and the general Plot Mode are terminated or
exited by the binary code 255 . When ever this code is issued , the plot
mode is terminated and must be re-entered by issuing a CONTROL B or
b inary 2 .

On the deluxe keyboards there are sixteen (1 6) special functions
keys l abelled FO through F 1 5 . Using these keys the various plot
submodes can be entered directly in the CRT mode (not in BASIC .) The FO
key produces a binary 240 code , F 1 a 24 1 , etc . , up to the F 1 5 key which
produces a 255 . In BASIC these plot submodes are entered by using the
PLOT statement as described below.

Plot Mode Escape - (255 binary)

This code is used to exit from the Plot Mode or any of the plot
submode s . On the deluxe keyboards the F 1 5 function key performs a Plot
Mode Escape .

Character Plot - (25 4 binary)

The Character Plot Submode is entered by a 25 4 after the general
Plot Mode is entered . All subsequent charac ters issued are treated as
plot characters except for 255 which is the Plo� Mode Escape . Thus ,
other plot submodes can not be entered directly from this mode . The
plot characters are construc ted by ORing together the selected plot
blocks to form the composite character as follows :

0 1 HEX 1 0 1 0 HEX 0 1
0 0 0 0
0 0 0 0
0 0 0 0

0 2 HEX 0 0 20 HEX 0 0
1 0 0 1
0 0 0 0
0 0 0 0

04 HEX 0 0 40 HEX 0 0
0 0 0 0
1 0 0 1
0 0 0 0

-72-

\

0 8 HEX 0 0
0 0
0 0
1 0

80 HEX 0 0
0 0
0 0
0 1

The Character Plot causes the the 6 wide by 8 high dot matrix to be
divided into 8 b locks organized 2 blocks wide and 4 blocks high . Each
b lock consists of a dot matrix 3 dots wide and 2 dots high . Each block
corresponds to an individual bit of the 8 bit plot charac ter . Large
characters may also be formed by using the plot blocks in several
character positions to create a large 5 by 1 matrix or any other desi red
size .

X Point Plot - (binary 25 3)

The X Point Plot is automatically entered upon receipt o f the
general Plot Mode code , binary 2 or CONTROL B . It may also be entered
directly from any of the other plot submodes . After entering the X
Point Plot submode , the next byte received defines the X value of the
block that is desired to be plotted . The X value may range from 0 to
1 27 and al l other values wil l cause 1 28 to be sub trac ted from the value
of X .

The X Point Plot may b e terminated by the code 255 which also
, causes the the general Plot Mode to be terminated . Any of the other

plot submodes may be entered directly from the X Point Plot by simply
entering the appropriate plot submode codes from 240 to 255 .

It should be noted that this plot submode does not cause a plot
b lock to be intensified , it only defines the X value . Once the X value
is received , the COMPUCOLOR II is automatically placed in the Y Point
Plot mode . Thus , the next code sent will be the Y value which may range
from 0 to 1 27 •

The procedure for entering and exiting the X Point Plot mode is
shown below:

Function

Plot Mode
X1 Value
Y1 Value

Xn Value
Yn Value
Plot Escape

or
Plot Submode

Code

2
0 to 1 27
0 to 1 27

0 to 1 27
0 to 1 27
255

240 to 25 4

The X Point Plot in conjunction with the Y Point Plot allows any
b lock on a 1 28 by 1 28 b lock matrix to be intensi fied . Thus , in BASIC
the above sequence becomes :

PLOT 2 , X 1 , Y 1 , . • . , XN , YN , 255

-7 3-

The following statement will plot points at the screen ' s four corners :

PLOT 2 , 0 , 0 , 0 , 1 27 , 1 27 , 1 27 , 1 27 , 0 , 255

Y Point Plot - (binary 25 2)

The Y Point Plot is entered by a binary 252 code after the general
Plot Mode is entered or automatically from the X Point Plot submode
after the X value has been sent . The next byte received after entering
the Y Point Plot submode defines the Y value of the block to be plotted
and intensifies that b lock . If the new b lock is within a charac ter
position that contains an ASCII charac ter , then the ASCII character is
replaced completely by the new block and its associated color .
XY Incremental Point Plot - (binary 25 1)

The XY Incremental Point Plot submode is entered by a b inary 25 1
code while in the general Plot Mode . The next byte defines the next two
(2) increments as shown below. This byte may take on values in the
range 0 to 239 since the binary codes from 240 to 255 are used for the
plot submodes .

b7 b6 b5 b4 b3 b2 b 1 bO

[X] [y] [X] [y]
1 1 2 2

Plot Block Plot Block 2

The 4 two bit codes are defined as follows :

0 No change
1 Negative increment
2 Posi tive increment
3 No change

If bO through b3 are "O"s , then the plot b lock will not plot , but
will still increment according to the coding of b4 through b7 . This
allows skipping a plot increment by plotting an " invisible " block . The
XY tncremental Plot mode may be terminated by the Plot Mode Escape code
255 . The following sample program will do a random walk using the
Incremental Point Plot mode .

1 0 DEF FNR{ X) =INT(X*RND(1))
20 PLOT 1 2 , 6 , 6 : REM CLEAR SCREEN AND PLOT IN LIGHT BLUE
30 PLOT 2 , 6 3 , 63 : REM PLOT POINT IN THE MIDDLE OF THE SCREEN
40 PLOT 25 1 : REM ENTER INCREMENTAL POINT PLOT MODE
50 FOR I= 1 TO 1 000
60 INC:FNR(3) *6 4+FNR(3) * 1 6+FNR(3) *4+FNR(3)
70 REM USE ONLY THE FIRST THREE DIRECTION CODES
75 IF (INC AND 1 5) =0 THEN 60 : REM NO ALLOW INVISIBLE BLOCKS
80 PLOT INC
90 NEXT I
1 00 PLOT 255 REM ESCAPE FROM PLOT MODE
1 1 0 END

-74-

X Bar Graph , XO Value - (250 binary)

The X Bar Graph , XO Value plot submode is entered by a binary 250
code after the general Plot Mode is entered . It may also be entered
directly from any of the other plot submodes except for Character Plot .
After entering the X Bar Graph , XO Value submode , the next byte defines
the XO value or the left horizontal start block of the horizontal bar
graph . The XO may range in value from 0 to 1 27 and all other values
have 1 28 sub tracted giving a new XO value in the range 0 to 1 27 �

Upon rece�v�ng the XO value , the value of XO is stored in memory
and the COMPUCOLOR II is automatically placed in the X Bar Graph , Y
Value plot submode (249 binary .) After receiving the next byte as the Y
value , the COMPUCOLOR II is automatically placed in the X Bar Graph , X
Max Value plot submode (248 binary .) After receiving the X Max value
the horizontal bar graph is drawn on the screen and the COMPUCOLOR II is
placed back in the X Bar Graph , Y Value plot submode ready to receive
new Y and X Max value pairs until a new plot submode is entered . Note
that once an XO v�lue is de fined it is unnecessary to respecify it for
each horizontal bar in the graph . This process is shown in the
following example .

Func tion Code

Plot Mode 2
or

Plot Sub mode 240 to 25 3

X Bar Graph , XO Value 250
XO value 0 to 1 27

y value - line 1 0 to 1 27
X Max value - line 0 to 1 27

y value - line n 0 to 1 27
X Max value - line n 0 to 1 27

Plot Escape 255
or

Plot Sub mode 240 to 254

For example , from BASIC a horizontal bar �raph plotting a sine
function can be drawn as follows :

1 0 PLOT 6 , 6 , 1 2 : REM SET COLOR TO CYAN AND CLEAR SCREEN
20 XO = 1 0 : REH SET XO VALUE
30 PLOT 2 , 250 , XO : REM ENTER X BAR GRAPH SUBMODE - SET XO
40 FOR Y=O TO 1 27 STEP 2 : REM SET Y VALUES
50 PLOT Y , X0+50 * (1 +SIN(Y/ 1 0)) : REM SCALE SINE FUNCTION
60 NEXT Y
70 PLOT 255 : REM PLOT ESCAPE

As can be seen from the above example s , once in the X Bar Graph , XO

-75-

mode , it is necessary only to define only two points for each new bar
graph . The bar graph is drawn after receiving the X Max value . Any of
the other plot submodes can be entered directly from the three X Bar
Graph submodes . Mul tiple colored bar graphs can be drawn by leaving
plot mode , changing the color , and re-entering the X Bar Graph , Y Value
submode (249 binary .) In this case the original XO value would be
preserved . Bars d�awn in this mode are one plot b lock wide ; thicker
bars can be drawn by changing the Y value by 1 and replot ting it along
with the same X Max value or using the X Incremental Bar Graph submode .

X Bar Graph , Y Value - (249 binary)

The X Bar Graph , Y Value plot submode is entered by a binary 249
code or automatically from the X Bar Graph , XO Value plot submode .
After entering this submode the next byte is used as the Y value of the
next bar in the graph to be plotted , and the COMPUCOLOR II is
automatical ly placed into the X Bar Graph , X Max Value plot submode (248
binary .) Any of the other plot submodes can be entered directly from
this submode . For more information on this submode see the description
of the X Bar Graph , XO Value submode (250 binary .)

X Bar Graph , X Max Value - (248 binary)

The X Bar Graph , X Max Value plot submode is entered by a binary
248 code or automatical ly from the X Bar Graph , Y Value plot submode .
After entering this submode the next byte is used as the X Max value of
the bar in the graph . The bar is plotted , and the COMPUCOLOR II is
automatically placed into the X Bar Graph , Y Value plot submode (249
binary) which allows the next bar to be de fined and drawn . Any of the
other plot submodes can be entered directly from this submode . For more
information on this submode see the description of the X Bar Graph , XO
value submode (250 binary .)

X Incremental Bar Graph - (247 binary)

The X Incremental Bar Graph plot submode is entered by a binary 247
code . After entering �his submode the next byte defines the next two
horizontal and vertical increments for two horizontal bar graphs . Thus ,
it is possib le to position a bar graph on ei ther side of the present
location by adding or sub trac ting an increment to the bar graph
previously defined . The coding and composi tion of the incremental
direction code is the same as that de fined in the XY Incremental Point
Plot submode (25 1 binary .) Any of the other plot submodes can be
entered direc tly from this submode .

Y Bar Graph , YO Value - (246 binary)

The Y Bar Graph , YO Value plot submode is entered by a binary 246
code after the general Plot Mode is entered . It may also be entered
directly from any of the other plot submodes except for Character Plo t .
After entering the Y Bar Graph , YO Value submode , the next byte de fines
the YO value or the bot tom vertical start b lock of the vertical bar
graph . The YO may range in value from 0 to 1 27 and all other values
have 1 28 subtracted giving a new YO value in the range 0 to 1 27 .

-76-

Upon receiving the YO value , the value of YO is stored in memory
and the COMPUCOLOR II is automatically placed in the Y Bar Graph , X
Value plot submode (245 binary.) After receiving the next byte as the X
value , the COMPUCOLOR II is automatically placed in the Y Bar Graph , Y
Max Value plot submode (244 binary .) After receiving the Y Max value
the vertical bar graph is drawn on the screen and the COMPUCOLOR II is
placed back in the Y Bar Graph , X Value plot submode ready to receive
new X and Y Max value pairs until a new plot submode is entered . Note
that once a YO value is defined , it need not be respecified for each
vertical b ar in the graph. This is shown in the. following example .

Function Code

Plot Mode 2
or

Plot Sub mode 240 to 25 3

Y Bar Graph, YO Value 246
YO value 0 to 1 �

X value - line 1 0 to 1 �
y Max value - line 1 0 to 1 �

X value - line n 0 to 1 27
y Max value - line n 0 to 1 �

Plot Escape 255
or

Plot Sub mode 240 to 25 4

For example , from BASIC a vertical bar graph plotting the area
under a random function can be drawn as follows :

1 0 PLOT 6 , 6 , 1 2 : REM SET COLOR TO CYAN AND CLEAR SCREEN
20 YO = 1 0 : REM SET YO VALUE
30 PLOT 2 , 246 , YO : REM ENTER Y BAR GRAPH SUBMODE - SET YO
40 FOR X=O TO 1 27 STEP 2 : REM SET X VALUES
50 PLOT X , Y0+1 00 *RND (1) : REM SCALE RANDOM FUNCTION
60 NEXT X
70 PLOT 255 : REM PLOT ESCAPE

As can be seen from the above examples , once in the Y Bar Graph , YO
mode , it is necessary to define only two points for each new bar in the
graph. The bar graph is drawn after receiving the Y Max value . Any of
the other plot submodes can be entered direc tly from the three Y Bar
Graph submodes . Multiple colored bar graphs can be drawn by leaving
plot mode , changing the color , and re-entering the Y Bar Graph , X Value
submode (245 binary .) In this case the original YO value is preserved .
Bars drawn in this mode are one plot block wide ; thicker bars can be
drawn by changing the X value by 1 and replotting it along with the same
Y Max value or using the Y Incremental Bar Graph submode .

-77-

Y Bar Graph , X Value - (2�5 binary)

The Y Bar Graph , X Value plot submode is entered by a binary 245
code or automatically from the Y Bar Graph , YO Value plot submode .
After entering this submode the next byte is used as the X value of the
next bar to be plotted , and the COMPUCOLOR II is automatical ly placed
into the Y Bar Graph, Y Max Value plot submode (244 binary .) Any of the
other plot submodes can be entered directly from this submode . For more
information on this submode see the description of the Y Bar Graph , YO
Value submode (246 b inary.)

Y Bar Graph , Y Max Value - (244 binary)

The Y Bar Graph , Y Max Value plot submode is entered by a binary
244 code or automatically from the Y Bar Graph , X Value plot submode .
After entering this submode the next byte is used as the Y Max value of
the bar in the graph . The bar is plotted , and the COMPUCOLOR II is
automatically placed into the Y Bar Graph , X Value plot submode (245
binary) which allows the next bar to be defined and drawn . Any of the
other plot submodes can be entered directly from this submode . For more
information on this submode see the description of the Y Bar Graph , YO
value submode (246 b inary .)

Y Incremental Bar Graph - (243 binary)

The Y Incremental Bar Graph plot submode is entered by a binary 243
code . A fter entering this submode the next byte defines the next two
vertical and horizontal increments for two vertical b ar graphs . Thus ,
it is possib le to position a bar graph on ei ther side of the present
location by adding or subtracting an increment to the bar graph
previously defined . The coding and composi tion of the incremental
direction code is the same as that defined in the XY Incremental Point
Plot submode (25 1 binary .) Any of the other plot submodes can be
entered directly from this submode .

XO Vector Plot - (242 binary)

The XO Vector Plot submode is entered by a binary 2�2 code after
the general Plot Mode is entered . After entering the XO Vector Mode the
next byte defines the XO point of the vector being drawn . The vec tor
mode requires two endpoints to be defined (i . e . XO , YO and X 1 , Y1 .) The
X1 , Y 1 values should be previously defined by way of the X and Y Point
Plot submodes (25 3 and 252 binary .) Upon receiving the XO value the
COMPUCOLOR II is automatically placed into YO Vector Plot .. submode .
After receiving the YO value the COMPUCOLOR II plots the best fit ting
s traight l ine between XO , YO and X 1 , Y 1 using the plot blocks and re turns
to the XO Vector Plot submode , ready to plot vectors between successive
XO , YO pairs . This process is shown below :

-7 8-

-

Function

Plot Mode
or

X Point Plot

X1 Vector point 1
Y1 Vector point 1

xo Vector Plot

xo Vector point 1
YO Vector point 1

XO Vector point n
YO Vector point n

Plot Escape
or

Plot Submode

Code

2

253

0 to 1 27
0 to 1 27

242

0 to 1 27
0 to 1 27

0 to 1 27
0 to 1 27

255

240 to 25 4

Thus , in BASIC the above sequence becomes

1 00 PLOT 2 , X 1 , Y 1
1 1 0 PLOT 242
1 20 FOR I= 1 TO N
1 30 PLOT XO (I) , YO (I)
1 40 NEXT I
1 50 PLOT 255

'
To plot a rectangle around the entire screen simply execute the

statement

PLOT 2 , 0 , 0 , 242 , 0 , 1 27 , 1 27 , 1 27 , 1 27 , 0 , 0 , 0 , 255

YO Vector Plot - (24 1 binary)

The YO Vector Plot submode is entered by a binary 2 4 1 code after
the general Plot Mode is entered . After entering this submode the next
byte defines the YO value of the vec tor being drawn . There is no
restriction on YO except that it must be in the range 0 to 1 27 . Upon
receiving the, YO value a vector is plotted from X 1 , Y1 to XO , YO with
XO , YO replacing the old X 1 , Y 1 endpoint . If the next vector has a X 1 , Y 1
value equal t o the old XO , YO value , then only the new XO , YO values need
be sent . This effectively draws a vector from the present XO , YO
position to the new XO , YO position. For more information on this submode
see the description of the XO Vector Plot submode (242 binary .)

-7 9-

""-"

• "

Incremental Vector Plot - (240 binary)

The Incremental Vector Plot submode is entered by a binary 240 code
after the general Plot Mode is entered . After entering this submode the
next byte defines the increments in the XO , YO and X 1 , Y1 values for the
vector from X 1 , Y 1 to XO , YO . The values for the increments are defined
as follows :

b7 b6 b5 b4 b3 b2 b 1 bO

[X] [y] [X] [y]
1 0 0

The 4 two bit codes for the increments are de fined as fol lows :

0 No change
1 Negative increment
2 Positive increment
3 No change

The incremental direction codes are similar to those used for the other
increment plot submodes . Furthermore , if ei ther half of the word is all
zeroes , then the corresponding X , Y values will be changed but no vector
will be drawn . This allows endpoints for the vectors to be skipped .
The only time a vector is drawn is when both halfs of the word are
non-zero . The Incremental Vector Plot submode does not automatically
transfer control to any other plot submode . Therefore , a series of
incremental movements in both X 1 , Y1 and XO , YO can be made by sending
consecutive incremental direction codes .

9 . 6 RS-232C Interface

The RS-232C interface al lows the user to connect any RS-232C
compatible device to the COMPUCOLOR II. For instance , this enab les most
serial printers to be interfaced wi thout any additional software .

The Rs-232C port is controlled by several escape codes which set
the baud rate of the serial output and direct all output to the serial
port . The defaul t baud rate of the serial port is 9600 baud wi th 1 stop
bit . This rate can be changed by using the ESC R sequence . The setting
of the A7 Bit de termines the number of stop bits when the ESC R sequence
is given. A7 OFF gives 2 stop bits (normal for 1 1 0 baud) and A7 ON
gives 1 stop bit . The baud rate is selected by issuing the sequence ESC
R followed by a charac ter in the range 1 through 7 which specifies the
baud rate as shown in the tab le below.

BAUD RATE SELECTION

NUMBER KEY 2 3 4 5 6 7

BAUD RATE 1 1 0 1 50 300 1 20 0 2400 4 800 9600

After the baud rate has been properly set , data can be transmitted to
the RS-232C serial port by executing an ESC M sequence . Once this

-80-

escape sequence has been issued , all inputs to the CRT display drives
(including all keyboard inputs and BASIC outputs) are directed to the
RS-232C port instead of the CRT screen. Thus , the only way to break out
of this mode from the CRT mode is via the CPU RESET key or in Disk BASIC
by executing a POKE 3326 5 , 0 statement which resets the BASIC Output F lag
to send characters to the sceen in visible cursor mode . In BASIC the
COMPUCOLOR II can be reset to the previous output mode by saving the
contents of the BASIC Output F lag with an X=PEEK (3 3 26 5) function before
issuing an ESC M sequence and then restoring the BASIC Output Flag by
executing the statement POKE 3325 1 , X as follows :

1 0 REM SET BAUD RATE = 300 , 1 STOP BIT
20 PLOT 1 4 , 27 , 1 8 , 3 , 1 5
1 00 GOSUB 9000 : REM DIRECT OUTPUT TO RS-232C PORT
1 1 0 FOR I= 1 TO 1 0
1 20 PRINT " THIS IS AN RS-232C TEST"
1 30 NEXT
1 40 GOSUB 9500 : REM RESET OUTPUT TO CRT
1 50 PRINT " BACK TO THE CRT"
1 60 END
9000 TMP = PEEK (3326 5) : REM SAVE BASIC OUTPUT FLAG
90 1 0 PLOT 27 , 1 3 : REM OUTPUT TO RS-232C
90 20 RETURN
9500 POKE 33265 , TMP : REM RESET OUTPUT TO CRT
95 1 0 RETURN

Several other control and escape codes interact with the RS-232C serial
port . The ESC C sequence transmits the cursor and color status to the
RS-232C port using the following sequence :

3 , X , Y , 6 , Status , ASCII Charac ter , 1 3

The X , Y values are the current cursor position , Status is the color
s tatus word of the ASCII Charac ter stored at the cursor position . Using
the CONTROL X code , every text character on the screen is transmi tted to
the RS-232C port from the visible cursor to the end of the page or until
an FF , OO sequence is found in the screen refresh RAM. The text
characters are sent in lines terminated by a linefeed and carriage
return . The color status is not transmitted .

NOTE - When interfacing any device to the RS-232C serial port it may be
necessary to switch the transmit and receive data lines at device end of
the cable (lines 2 and 3) . See Appendix D . 4 for pin assignments on the
COMPUCOLOR II .

9 . 7 Using the COMPUCOLOR II as a Terminal

The COMPUCOLOR II can be used as a data communications terminal
with the RS-232C interface . To enter the terminal mode , the user must
strike CPU RESET , which places the COMPUCOLOR II into CRT mode or
terminal mode .

Initially , the CRT is placed in local mode where all keyboard
inputs are echoed to the screen. At this point the correct b aud rate

-81 -

should be set . Hal f-duplex mode and full-duplex mode may be entered by
striking the ESC H and ESC F sequences , respectively . In hal f duplex
mode all keyboard inputs are echoed both to the CRT and to the RS-232C
port . In full duplex mode all keyboard inpu ts are directed only to the
RS-232C port . By striking the BREAK key , full duplex mode can be exited
and hal f duplex mode entered .

NOTE When interfacing a modem or acoustic coupler to the RS-232C
serial port , it usually is not necessary to switch the transmit and
receive data l ines because the RS-232C port is configured as if the
COMPUCOLOR II were a data communications terminal . On some computer
sys tems using 7 bit ASCII codes , correc t parity is required . The
COMPUCOLOR II is set up to transmit and receive 8 bit ASCII charac ters
and data which precludes parity checking . In this case proper
communications will require a special communications program that
executes in the user ' s RAM workspace .

Another pro�lem that may b e encountered i s due t o the fact that the
COMPUCOLOR II responds to almost every ASCII control code and escape
sequence . If the host computer sends control codes other than NULL,
CARRIAGE RETURN , LINEFEED , and ERASE PAGE , then the COMPUCOLOR II may
respond in an unexpected fashion . In these cases it is probably best . if
the host computer treats the COMPUCOLOR II as a TELETYPE instead of a
CRT dislay terminal .

9 . 8 Miscellaneous Escape Codes

The COMPUCOLOR II has several addi tional escape codes to test the
display , and jump to fixed and user de fined memory locations . A test
pattern can be generated on the CRT screen using the ESC Y test mode
sequence . By issuing an ESC Y followed by a charac ter , the entire
screen is filled with that charac ter using the current visible status
word as the visib le status word for each character on the CRT screen.

Several of the remaining ESCAPE codes have been pre-programmed to
execute JMP ' s to certain memory locations as outl ined below .

ESCAPE CODE

I
s
T

MEMORY LOCATION
.HEX DECIMAL

9000
AOOO
8200
8 1 BF

36864
40 960
33280
332 1 5

The ESC is a user definab le escape code .
instruction into the three bytes · starting at
location in memory can be defined .

-82-

By POKEing an 80 80 JMP
33 2 1 5 a jump to any

1 0 . FCS

1 0 . 1 Introduction to F CS

The File Control System, or FCS , is used to manage the diske ttes
which store programs . The File Control System enables the user to store
and save programs , screen displays , and arrays .

To enter FCS the user must first type ESC D , then the message
prompt F CS> will appear . Once in the File Control System , commands
should be entered after the FCS> promp t . For example , the command DIR
should be used for listing the directory of a diskette . To change from
one drive to another , the command DEVO : must be typed for the internal
drive , and DEV1 : must be typed for ·the external disk drive .
Machine-code programs may be in either one of two different F CS file
types :

F ILE TYPE . PRG
A . PRG type file is created with the F CS SAVE command . It is a

machine-code program in "Memory image" form. The information in the
file is a contiguous memory image of the program. The RUN command will
load a . PRG file into memory starting at the specified Load Address in
the fil e ' s direc tory entry , and begin execution at the Start Address
specified in the file ' s directory entry . A . PRG file is loaded into
memory much faster than an . LOA file . Therefore , once a program is
working , it should be saved in . PRG form with the SAVE command , so that
subsequent RUN ' s of the program will be quicker .

F ILE TYPE . LOA
An . LOA type file is created by the COMPUCOLOR 80 80 Assemb ler . The

file consists of one or more data records and is terminated by one end
record . Each data record specifies a load address for the record , and
one or more data bytes to be loaded sequentially into memory starting at
the load address . The end record specifies the starting (execution)
address for the program (the operand of the END statement in the source
program) .

FCS can also be entered via the ESC G sequence . In this mode all
outputs are sent to the RS-232C serial port and the prompts and inputs
are echoed to the CRT screen. The ESC ESC sequence will exit F CS .

I n BASIC FCS can b e called by issuing a PLOT 27 , 4 (or PLOT 27 , 7 for
output to the RS-232C port) . All subsequent outputs from BASIC are
treated as inputs to FCS . This mode is exited b y executing a PLOT 27 , 27
statement which returns control of BASIC ' s output back to BASIC . See
Section 8 . 2 for further de tails .

1 0 . 2 The FCS Commands

The FCS system has a number of commands which enable the user to
manipulate records a s desired . A list of commands appears in Appendix

-83-

B . 1 . The following commands are used as explained below . Before any of
these commands may be used , the user must firs t enter(the File Control
System by typing ESC D as described above . In the following
descriptions of commands , angle bracke ts , < > , will be used to denote an
element of a statement that is optional . The ' Device Name ' refers to
the name and number of the disk drive being used . The COMPUCOLOR II has
an internal disk drive , CDO , and an optional external disk drive , CD1 .
The ' F ile Spec ' is the name that the user has assigned to the file
followed by the file type (. PRG , . LDA , . BAS , e tc .) and , optionally , a
semicolon (;) followed by a version number in the range 0 1 to FF HEX .
If the specified file is being read , then the default version is the
file with the largest version number. With files being written, the
default version number is one higher than the largest version number of
an existing file on the specified device . If no file currently exists on
the disk with the specified name , then the default version number is 0 1 .
The ' Memory Spec ' is the ' Start Address ' in HEX followed by the number
of bytes or followed by hyphen (-) and the ' End Address ' . Only the
first three le tters of any command are required .

CAUTION : When a COPY , DELETE , or DUPLICATE command is executed , the
screen memory is used , and any screen display will be lost . A brief
character display wil l appear during the exucution of these commands .

COPY

The COPY command allows the user to copy a file , possib ly to
another disk drive , and is of the form :

COPY <Device Name : > File Spec TO <Device Name : > File Spec

F or example :

COP O : TEST . PRG TO 1 : ABC

When entered , this command will copy the latest version of TEST . PRG on
device 0 to file name ABC . PRG on device 1 . The COPY command used the
screen memory as a temporary buffer.

DELETE

The DELETE command allows for the deletion of any file on the
diskette , and is of the form :

DELETE <Device Name : > File Spec

F or example :

DEL TEST . BAS ; 1
DEL 1 : TEST . PRG ; 2
DEL CD1 : NAME . RND ; 1

The complete F ile Spec is needed to delete a file .
protection is provided to prevent accidental

-84-

This form of file
erasures . The DELETE

-

command repacks the disk and directory by using the screen memory as a
temporary buffer.

DEVICE

The DEVICE command allows the user to change the de fault device or
drive , and is of the form :

DEVICE <Device Name : >

If the Device Name is not specified , then the current default device is
listed . For example :

DEV CDO :

will change the default device to the COMPUCOLOR II internal disk
drive .

DIRECTORY

The DIRECTORY command l ists all the programs on the diskette on any
device , and is of the form :

DIRECTORY <Device Name : >

For example :

DIR
DIR CD1 :

A directory listing may be halted by striking the BREAK key , and it
may be resumed by striking the RETURN key . If the LINEFEED key is
struck after the BREAK key , the directory is stopped and the machine is
ready to receive another command .

DUPLICATE

The DUPLICATE command al lows all the files on one diskette to be
copied t o another diskette . The two specified devices must be of the
same type , but have different numbers . The command is of the form:

DUPLICATE Device Name : TO Devic.e Name :

For example :

DUP 0 : TO 1 :

The DUPLICATE command use s the screen memory as a temporary b uffer.

- 85 -

�

INITIALIZE

The INITIALIZE command allows the user to give a diskette a
ten- le tter name and optionally assign the number of al lotted directory
b locks . This command clears all the directory information on a
diskette , effectively deleting all files on the diskette . It should
only be used when a "clean" diskette is desired . It is of the form :

INITIALIZE <Device Name : > Volume Name No . of DIR blocks

For example :

INI CDO : SAMPLENAME
INI CD1 : TESTDISK0 1 1 0 (the 1 0 is optional)

The COMPUCOLOR II Disk directory size defaults to 6 blocks which can
hold 34 files . Each directory b lock can hold information on 6 files ;
howeve r , 2 entries are neccesary for the Volume Name and free space
entries , i . e . 34 = 6 * 6 - 2 .

LOAD

The LOAD command allows the user to load any type file into any RAM
memory location he may wish. This indicates that the user may bring a
display to the screen which is correct . LOAD command uses the same
guide lines as the SAVE command . The LOAD command operates differently
depending on the file type loaded . The default type is . LDA .

To LOAD a file type other than . LDA , the command is of the form :

LOAD <Device Name : > File Spec <Load Address>

The file is assumed to be a "memory image" file and is loaded
contiguously into memory starting either at the load address in the
file ' s directory entry or at the load actress specified in the command
line .

To load a file of type . LDA , the command is of the form:

LOAD <Device Name : > File Spec <Lowest Address <Memory Spec>>

Each data record in the file is loaded into memory . If Lowest Address
and Memory Spec are not specified , then each record is loaded at the
address specified in the record .

If
Spec is

1 .
2 .

3 .

4 .

Lowest Address and Memory Spec are speci fied , the defaul t Memory
AOOO -FFFF . A "memory range" will be determined as follows :

If the Memory Spec is omitted , the range will be AOOO-FFFF .
If one number , i . e . COOO , is given for the Memory Spec , then
the range wil l be specified by the given number as the low
limit and FFFF as the high limit of the range .
If two numbers , separated by a hyphen are given for the Memory
Spec , then the range is specified by those numbers .
I f two numbers , separated by a space or comma , are given for
the Memory Spec , then the first number will be the low limit

-86-

of the range , and the second number is the byte count used to
calculate the high limit of the range . F or example , DOOO 400
will give a range DOOO-D3FF .

An "offset " will
"Lowest Address " .
specified in the
within the "memory
must be LOADed and

READ

be calculated as "low limit of memory range" minus
Each data record will then be loaded at the address
record plus the " offset" . Data will b e loaded only
range " as determined above . NOTE : BASIC programs
SAVEd in BASIC , not in F CS .

The READ command allows retrieval o f information on any part o f the
diskette without regard to the directory or program boundaries . The
command is of the form:

READ <Device Name : > Start Block Memory Spec

F or example :

READ CDO : 20 7000-7FFF

reads 4096 bytes (1 000 HEX) from the internal disk drive starting at
b lock 32 (20 HEX) into the display memory at 7000-7FFF .

RENAME

The RENAME command allows the
name , fil e , type and the version
without changing the information
is of the form:

user, in one step , to change the f'ile
number separately or collectively

stored in the program. The statement

RENAME <Device Name : > File Spec TO File Spec

F or example :

REN TEST . PRG ; 1 TO NWTEST. PRG ; 2

renames the file TEST . PRG ; 1 to NWTEST. PRG ; 2 .

RUN

The RUN command is used to load and execute machine-code programs .
Only two file are permitted with the RUN command : . PRG and . LDA . The
default file type is . PRG . To execute an . LDA file the . LDA extension
must be specified . The RUN command is of the form:

RUN <Device Name : > File Spec

F or example :

RUN CHESS

-87-

loads and executes a file CHESS . PRG from the default device .

SAVE

The SAVE command allows the user to save any type of data , program,
or display in a file on a diskette . The command is of the form:

SAVE <Device Name : > File Spec Memory Spec Start Address
Actual Address

For example :

SAVE SCREEN . DSP 6000 1 000

or

SAVE SCREEN . DSP 6000-6FFF

wil l save the screen display in a file called SCREEN . DSP .

WRITE

The WRITE command allows information to be writ ten anywhere on the
diskette without regard to the directory or previous program boundaries ,
and is o f the form :

WRITE <Device Name : > Start Block Number Memory Spec

NOTE : It is possible to destroy the F CS directory information using the
WRITE command . Care should always be taken when using this command .

-88-

APPENDICES

A . DISK BASIC

A . 1 BASIC Statements

The following summary of BASIC statements defines the general
format for each statement and gives a brief explanation. Optional items
are enclosed in angle bracke ts , ' < ' and ' > ' . The fol lowing items in the
syntax descriptions are used to represent different types of variab les
and expressions :

var
nvar
svar
expr
nexpr
sexpr

- numeric or string variable
- numeric variable
- string varaible
- numeric or string expression
- numeric expression
- string expression

STATEMENT SYNTAX AND DESCRIPTION

CLEAR CLEAR <nexpr>
Clears all variables and optionally sets the string space size
to nexpr bytes .

CONT CONT
Continues execution after CTRL/ J or .J, { LINEFEED) .

DATA DATA value list
Defines data values to be read using the READ statement .

DEF DEF FN nvar { nvar) = nexpr
Defines a user function to be used in the program.

DIM DIM var{ nexpr < , • • • , nexpr>) < , • • • >
Reserves space for lists and tables according to subscripts
specified after variable name . Up to 255 dimensions .

END END

F ILE "N"

Terminates program execution.

F ILE "N" , filename , record s , record size , blocking factor
Creates a new random file with the specified number of
{ 1 -3 2767) , record size { 1 -32767 bytes) , and . blocking
{ 1 -255) . File name is a string expression containing
FCS file name .

-89-

record s
fac tor

a valid

/

F ILE "R" F ILE "R" , filenumber , filename , buffers < ; records , record size ,
blocking factor>
Opens a random file with the specified file number (1 - 1 27) and
number of buffers (1 -255) .

F ILE "A" F ILE "A" , file , curreni record < , records , record size , b locking
factor>
Finds the attributes for the specified file .

F ILE " C " F ILE 11 C 11 , file 1 < , • • • >
Closes the specified files and releases the buffer space .

F ILE 11D 11 F ILE 11D 11 , file1 < , • • • >
Writes any modified buffers for the
immediately to the corresponding devices .

speci fied files

F ILE "T" F ILE "T" < , line number>
Causes file errors to trap to the specified line number . No
line number turns the file error trapping off .

F ILE "E" F ILE "E" , file , error , line number
F inds the disk error number and location of the last file
error .

F OR FOR nvar = nexpr1 TO nexpr2 <STEP nexpr3 >
Sets up a loop to be executed the specified number of times .

GET GET file< , record< , first>> ; nvar , svar [byte count] , • • •

GO SUB

Reads from the record in the file starting from the first byte
into the variables in the list . String variables must have a
byte count (1 -255) .

GOSUB line number
Used to transfer control to the specified line number of a
subroutine .

GOTO GOTO line number

IF

Used to unconditionally transfer control to the speci fied l ine
number .

IF nexpr GOTO line number
IF nexpr THEN line number
Used to conditionally transfer control to the specified line
number .

IF nexpr �HEN statement < : statement : • • • >
Used to conditionally execute BASIC statements

-90-

INPUT INPUT < " s tring" ; > var < , var , • • • >
Used to input data from the terminal , prompts with ei ther " ? "
or the optional quoted string as the prompt .

LIST LIST < line number>
Prints the user program currently in memory on the CRT
display , optionally , starting from the specified line number.

LOAD LOAD filename
Loads the specified file . If no extension is specified , then
a BASIC program is loaded ; otherwise , the . ARY extension loads
the specified numeric array , and the . DAT extension loads the
specified data into memory after BASIC ' s workspac e .

NEXT NEXT <nvar < , nvar , • • . >>
Placed at the end of a FOR loop to return control to the F OR
statement .

ON ON nexpr GOSUB line number < , line number , • • • >

OUT

Mul tiple GOSUB statement . Transfers control to the line
number specified by nexpr .

ON nexpr GOTO line number < , line number , • • • >
Multiple GOTO statement . Transfers control to the line number
specified by nexpr .

OUT port , nexpr
Outputs the specified nexpr
CAUTION : Do not output
(96-1 1 1) •

(0-255) to the 80 80 por t (0-255) .
to the CRT controller chips ports

PLOT PLOT nexpr < , nexpr , • • • >

POKE

PRINT

Sends the one byte results (0-255) of the expressions to the
CRT display .

POKE location , nexpr
Causes the one byte result of nexpr to be placed in the
specified memory location (-327 6 8 to 65535) .

PRINT expr < , expr , • • . >
PRINT expr < ; expr ; • • • >
Prints the results of the expressions in the lis t . Commas are
used for normal spacing , and semicolons are used for
compressed spacing . If either a comma or a semicolon is the
last item in the print lis t , the carriage return is
suppressed .

PRINT SPC (nexpr)
Prints the specified number of spaces . May be placed anywhere
in the print lis t .

-9 1 -

PRINT TAB(nexpr)
Tabs to the specified column . May be placed anywhere in the
print list .

? Equivalent to the keyword PRINT.

PUT PUT file < , record< , first > > ; nexpr , sexpr [byte count] < , • . . >
Writes the expressions in the list to the record in the file
starting from the first byte . String expressions must have a
byte count .

READ READ var < , var , • • • >

REM

RESTORE

RETURN

Used to assign the values in DATA statements to the variables
specified in the list .

REM comment
Used to insert explanatory comments in a BASIC program.

RESTORE <line number>
Resets the data pointer to either the first DATA statement or
optionally to the specified line number.

RETURN
Returns program control to the statement following the last
executed GOSUB statement .

RUN RUN < line number>
Executes the BASIC program in memory , optionally , starting at
the specified line number.

SAVE SAVE filename

WAIT

Saves the specified file . If no extension is specified , the
current BASIC program in memory is saved ; otherwise , the . ARY
extension saves the specified numeric array , and the . DAT
extension saves the data in memory after BASIC ' s workspace .

WAIT port , nexpr1 < , nexpr2>
Reads from the specified 80 80 port and exclusive OR ' s the
result with nexpr2 (0 if not present) , and then AND ' s with
nexpr 1 . The program wai ts until the result is zero before
continuing .

statement : statement < : statement : • • • >
A colon is used to separate statements in a multiple statement
line .

-92-

A . 2 BASIC Operators

The

SYMBOL

=

+

*

I

NOT

AND

OR

= , < , > , <= ,
= < , >= , = > ,
< >

FUNCTION

Assignment or equality test (DISK BASIC does not allow
the LET statement)

Negation o r Sub trac tion

Addition or String Concatenation

Mul tiplication

Division

Exponentiation

Logical or One ' s complement (2 byte integer)

Logical or Bitwise AND (2 byte integer)

Logical or Bitwise OR (2 byte integer)

Relational tests (result is TRUE = -1 or F ALSE = 0)

precedence of operators is :

1 . Expressions in parentheses

2 . Exponentiation (A"'B)

3 . Negation (-X)

4 . * , 1

5 . + , -

6 . Relational Operators (= , < > , < , > , < = , >=)

7 . NOT

8 . AND

9 . OR

-93-

A . 3 Standard Mathematical Functions

BASIC provides func tions to perform cer tain standard mathematical
operations such as square roots , logarithms , e tc .

These functions have three or four let ter call names fol lowed by a
parenthesized argument . They are predefined and may be used anywhere in
a program.

CALL NAME

ABS(x)

ATN(x)

CALL(x)

COS(x)

EXP(x)

F RE(x)

INT(x)

INP(x)

LOG(x)

PEEK (x)

POS(x)

RND (x)

SGN (x)

SIN(X)

SPC(x)

SQR(x)

TAB(x)

F UNCTION

Returns the ab solute value of x .

Returns the arctangent of x as an angle in radians in
range + 7i/ 2) , where 'i\ = 3 . 14 1 5 9 .

Call the user machine language program at decimal
location 33282 . (8202 HEX) D , E registers have value
of X and D , E registers must have Y on re turn from
machine language routine .

Returns the cosine of x rad ians .

Returns the value of ex where e = 2 . 7 1 828 .

Returns number of free bytes not in use .

Returns the greatest integer less than or equal to x .

Returns a byte from input port x . The range for x is
0 to 255 .

Returns the natural logarithm of x .

Returns a byte from memory address -327 6 8<x<65535 ; if
x is negative the memory address is 65536+x .

Returns the value of the current cursor posi tion
between 0 and 6 3 .

Returns a random number between 0 and 1 .

Returns a - 1 , 0 , or 1 , indica ting the sign of x .

Returns the sine o f x radians .

Causes x spaces to be generated . (Valid only in a
PRINT statement) .

Returns the square· root of x .

Causes the cursor to space over t o column number x .
(Valid only in a PRINT statement) .

-94-

TAN(x) Returns the tangent of x radians .

The argument x to the functions can be a constant , a variab le , an
expressio n , or another function . Square bracke ts cannot be used as the
enclosing characters for the argument x , e . g . SIN [x] is il legal .

Function calls , consisting of the function name followed by a
parenthesized argument , can be used as expressions anywhere that
expressions are legal .

Values produced by the functions SIN(x) , COS(x) , ATN(x) , SQR(x) ,
EXP(x) , and LOG(x) have six significant digits.

A .4 Standard String Functions

Like the intrinsic mathematical functions (e . g . , SIN , LOG) , BASIC
contains various functions for use with character strings . These
func tions allow the program to access parts of a string , determine the
number of characters in a string , generate a charac ter string
corresponding to a given number or vice versa , and perform other useful
operations . The various functions available are summarized in the
following table .

CALL NAME

ASC (x$)

CHR$(x)

F RE(x$)

LEFT$ (x$, I)

LEN(x$)

MID$ (x$, I , J)

FUNCTION

Returns the eight bit internal ASCII code (0-255) for
the one-character string . If the argument contains
more than one character , then the code for the first
character in the string is returned . A value of 0 . is
re turned if the argument is a null string (LEN(x$) =
0) . See ASCII codes in Appendix E .

Generates a one-charac ter string having the ASCII
value of x where x is a number in the range 0 to 25 5 .
Only one charac ter can be. generated .

Returns number of free string bytes . (See CLEAR
statement in 3 . 1 1)

Returns left-most I characters of string (x$) . If
I >LEN(x$) , then x$ is returned .

Returns the number of characters in the string x$,
with non-printing charac ters and blanks being
counted .

J · is optiona,l . Without J , returns right-most
characters from x$ beginning with the It'h charac ter .
I f I>LEN(x$) , MID$ returns the null string . With 3
arguments , it returns a string of length J of
characters fro.m x$ beginning with the Ith charac ter .
I f J is greater than the number if charac ters in x$ to
the right o� I, MID$ returns the rest of the string .
Argument ranges : O < I<=255 , O < =J< =255 .

-95-

RIGHT$ (x$, I) Returns right-most I characters of string (x$) . If
I>LEN(x$) , then x$ is returned .

STR$(x)

VAL(x$)

Returns the string which represents the numeric value
of x as it would be printed by a PRINT statement .

Returns the number represented by the string x$. If
the first charac ter of x$ is not + , - , or a digit ,
then the value 0 is returned .

In the above example , x$ and y$ represent any legal string
expressions , and I and J represent any legal arithmetic expressions .

A . 5 BASIC Error Codes

After an error occur s , BASIC returns to command level and types
READY. Variable values and the program text remain intact , but the
program cannot be continued and all GOSUB and F OR context is lost .

When an error occurs in a statement executed in immediate mode , no
line number is printed .

Format of error messages :

Stored BASIC statement
Immediate mode statement

XX ERROR IN YYYY
XX ERROR

In both of the above examples , "XX" is the error code . The nyyyyn
is the line number in which the error occurred in the indirect
statement .

ERROR

BS

DD

CF

The following are the possible error codes and their meanings :

�lEANING

Bad Sub script . An attempt was made to reference a matrix
element which is outside the dimension of the matrix . This
error can occur if the wrong number of dimensions is used in a
matrix reference . F or instance , A (1 , 1 , 1) = Z when A has been
dimensioned DIM A(2 , 2) .

Doub le Dimension . After a matrix was dimensioned , another
dimension statement for the same matrix was encountered . This
error often occurs if a matrix has been given the defaul t
dimension 1 0 because a statement like A(I) =3 is encountered
and then later in the program a DIM A(1 00) is found .
Call F unction error . The parameter passed to a mathematical
or string func tion was out of range . CF errors can occur due
to :

1 . a negative matrix subscript (A(- 1) =0)
2 . an unreasonab ly large matrix sub script (>3 2767)
3 . LOG with a negative or zero argument
4 . SQR with a negative argument

-96-

._ .. .,z�;..

ID

NF

OD

OM

ov

SN

RG

5 . A�B with A negative and B not an integer
6 . a CALL(x) before the address of the machine language

subroutine has been patched in
7 . calls to MID$, LEFT$, RIGHT$, INP , OUT , WAIT , PEEK , POKE ,

PLOT , TAB , SPC or ON . • • GOTO/ GOSUB with an improper
argument

Il legal Direct . You cannot use an INPUT or DEF statement in
immediate mode .

NEXT without FOR. The variable in a NEXT statement
corresponds to no previously mentioned FOR statement .

Out of Data. A READ statement was executed but all of the
DATA statements in · the program have already been read . The
program tried to read too much data or an insufficient number
of data values were included in the program.

Out of Memory . Program too large , too many variables , or too
many F OR loops , too many GOSUB ' s , too complicated an
expression , or any combination of the above .

Overflow . The result of a calculation was too large to be
represented in BASIC ' s numeric format . If an underflow
occurs , zero is given as the result and execution continues
without any error message being printed .

Syntax error . Missing parenthesis in an expression , illegal
character in a line , incorrect punctuation , etc .

RETURN without GOSUB . A RETURN statement was encountered
without a previous GOSUB statement being executed .

US Undefined Statement . An attempt was made to GOTO , GOSUB , or
THEN to a statement which does not exis t .

/0

CN

LS

OS

SL

ST

Division by Zero .

Continue error . Attempt to continue a program when none
exists , an error occurred , or after a new line was typed into
the program .
Long String . Attempt was made by use of the concatenation
operator to create a string more than 255 characters long .

Out of String Space . Use the CLEAR X
more string space or use smaller
variables .

statement to allocate
strings or fewer string

SAVE/LOAD error . (From disk operation .) Other error messages
may also appear from the File Control System. See Appendix
B . 2 .

String Temporaries . A string expression was too complex .
Break it into two or more shorter expressions .

-91-

TM

UF

Type Mismatch. The left hand side of an assignment statement
was a numeric variable and the right hand side was string , or
vice versa , or , a function which expected a string argument
was given a numeric one or vice versa .

Undefined Function . Reference was made to a user defined
func tion which was never defined .

A . 6 BASIC Random F ile Error Codes

ERROR

EV

BF

NO

AO

FS

RO

EF

co

cc

RE

WE

NUMBER MEANING

2

4

6

8

1 0

1 2

1 4

1 6

1 8

20

No error vector . No file error trap line number has
been set with a F ILE "T" statement .

Bad file name . Improper FCS file name .

File not open.
open .

The specified file number is not

File already open.
already in use .

The specified file number is

File size error . The file being created with the F ILE
" N " statement is too large or the file parameters on
the file being opened with the F ILE " R " statement are
improper .

Record overflow. Too many data bytes were ei ther read
from or writ ten to the current record .

End of file . Tried to read or write past the end of
the file .

Cant ' t open file . The specified file does not exist
on the specified device . (Possibly a diske tte or
hardware problem.)
Can ' t close file . Th� specified file can not be
closed . (Usually a diske tte or hardware problem .)

FCS READ error .
problem .)

F CS WRITE error .
problem .)

(Usual ly a diske tte or hardware

(Usually a diskette or hardware

-98-

B . FCS (File Control System)

B. 1 F CS Commands

The File Control System is entered by pressing (ESC) then D from
the keyboard , or PLOT 27 , 4 from BASIC . (Only the first three letters of
the command need to ·be typed in .) If (ESC) , D is from the keyboard then
BASIC is terminated and must be re-entered by (ESC) , E key sequence .

The following definitions will be used to describe the F CS
commands :

() denotes mandatory element;
[] denotes .optional element and if not specified , will result in

the default type .

(Device name :) = [Device type] [Number] (:)
Device type is CD for COMPUCOLOR II Disk and number is either
0 or 1 .

(Memory spec) = (Load address) (byte count) or (-end address)
All memory addresses are in HEX format .

(File Spec .) = (File name) [. Type] [; Version]
File name is any 6 characters . Type can be any three
characters and PRG is the default type . Version is 0 to FF
HEX . NOTE: After a default device type has been selected only
the number of the device is required . The default device for
the COMPUCOLOR II is CDO .

CAUTION : The COPY , DELETE , and DUPLICATE commands use the screen memory
as a temporary buffer while performing the specified function .

COMMAND

COPY

DELETE

DEVICE

DIRECTORY

SYNTAX AND DESCRIPTION

COPY [Device Name :] (File Spe c) TO [Device Name :]
[File Spec]
Copies the specified file , usually , to another device .
It uses the screen memory as a temporary buffer.

DELETE [Device Name :] (F·ile Spec)
All File Spec options are required . Deletes the
specified file , and repacks the disk and direc tory
using the screen memory .

DEVICE [Device Name :]
Sets and displays the current default Device Name .

DIRECTORY [Device Name :]
Lists the ' 4irectory for the default or speci fied
device .

-99-

DUPLICATE

EXIT "FCS"

INITIALIZE

LOAD

READ

RENAME

RUN

SAVE

WRITE

DUPLICATE (Device Name :) TO (Device Name :)
Duplicates all the files on one diske tte to another
diske tte on a second diskette using the screen memory
as a temporary buffer .

ESC ESC or ESC E to return to BASIC . In BASIC , use
PLOT 27 , 27 .

INITIALIZE (Device Name :) (Volume Name) [No . Dir .
Blocks]
Initializes the directory on the diske tte currently in
the specified device with the given Volume Name and
number of directory blocks .

LOAD [Device Name :] (File Spec) [Low Addr [Memory
Spec]]
Loads memory with a program. Defaults to . LDA type
files written by the COMPUCOLOR II Assembler. (See
Section 1 0 . 2 for complete details .)

READ [Device Name :] (Star t Block No .) (Memory Spec)
Reads into memory from anywhere on the diskette
starting at any block and ending where specified ,
without regard to program b oundaries .

RENAME [Device Name :] (File Spec) TO (File Spec)
Allows any file to be renamed without changing any
information in the file itself.

RUN [Device Name :] (File Spec)
Lcrads and executes the specified program. The default
type is . PRG .

SAVE [Device Name :] (F ile Spec) (Memory Spec) [Start
Address [Actual Addres s]]
Saves memory image in the specified file . The Start
Address and Actual Address default to the lower limit
of the Memory Spec .

WRITE [Device Name :] (Start Block No .) (Memory Spec)
Writes memory image to the specified b lock on a
diskette without regard to the F CS directory
information and file boundaries . CAUTION : It is
possib le to destroy the F CS directory and file
information on a diskette with this command .

- 1 00-

-

B . 2 FCS Error Codes

The numbers to the right of the code meanings refer to the list of
error solutions that follows the code lis t .

MESSAGE MEANING

EBLF BAD LOAD F ILE SPEC , 2

EBLK INVALID BLOCK NUMBER , 2

ECOP ERROR DURING COPY , 1 & 3

ECFB CAN ' T F IND BLOCK , 3

EDCS DATA CRC ERROR , 3

EDEL DELETE ERROR , 1 & 3

EDFN DUPLICATE F ILE NAME , 2

EDIR DIRECTORY ERROR , 1 & 2

EDRF DIRECTORY FULL, 4

EDSY DATA SYNC CHARACTER ERROR , 1 & 3

EDUP ERROR DURING DUPLICATE , 1 & 3

EFNF FILE NOT FOUND , 2

EF RD FILE READ ERROR , 3

EFWR F ILE WRITE ERROR , 3

EHCS HEADER CRC ERROR , 3

EIVC INVALID COMMAND , 2

EIVF INVALID FUNCTION , 2

EIVD INVALID DEVICE , 2

EIVP INVALID PARAMETERS, 2

EIVU INVALID UNIT , 2

EKBA KEYBOARD ABORT , 4 .

EMDV MISSING DEVICE NAME , 2

EMEM MEMORY ERROR DU�ING READ , 4

- 1 0 1 -

EMFN MISSING F ILE NAME , 2

EMVN MISSING VOLUME NAME , 2

EMVR MISSING VERSION , 2

ENSA NO START ADDRESS , 2

ENVE NO VOLUME ENTRY IN DIRECTORY , 5

ERSZ F ILE TOO LARGE TO READ INTO ALLOCATED MEMORY , 2 & 4

ESIZ DEVICE SIZES NOT SAME ,

ESKF SEEK F AILURE , 1

ESYN SYNTAX ERROR , 2

EVFY VERIFY F AILURE DURING WRITE , 3

EVOV VERSION NUMBER OVERFLOW, 4

EWRF WRITE F AILURE , 3

· EWSF F ILE TOO LARGE TO WRITE ON DISKETTE , 2 & 4

Descriptions of Solutions to FCS Errors

1 . Mechanical Prob lem--Jammed READ/WRITE head , loose disk drive ,
internal I/ 0 connectors . Refer to COMPUCOLOR , II Maintenance
Manual .

2 . Invalid User Input--Incorrect entry from user .
Commands , Section B . 1 .

3 . Diskette F ailure--Try a different diske tte .

4 . Error Message is self-explanatory .

Refer to FCS

5 . Diskette Not Initialized--you need to initialize the diske tte and
possib ly purchase a formatted COMPUCOLOR II blank diske tte .

- 1 02-

C . CRT COMMANDS

C . 1 Control Codes

To enter a control code , hold down the CONTROL key while depressing
the desired character key .

CONTROL
CODE

0

2

3

4

5

6

7

8

9

1 0

1 1

CONTROL
KEY SECTION

@

A 8 . 1 . 2

B 9 . 5

c 9 . 4

D

E

F 9 . 2

G

H 9 . 4

I 9 . 4

J 9 . 4

K 9 . 4

EXPLANATION

NULL-Has no effect .

AUTO - Loads and runs a BASIC program
named "MENU" from the disk drive .

PLOT - Enters graphic plot mode (see plot
submodes) , not allowed as a BASIC input
character .

CURSOR X , Y - Enters X-Y cursor address
mode for either visible cursor or b lind
cursor , used to go from BASIC to CRT MODE
when typed as a BASIC input character .

Not used .

Not used .

CCI - The following character provides the
8 bit visible status word . Specifies
Foreground , Background , Blink and Plot .
(See Appendix C . 2)

Not used .

HOME - Moves the cursor to top left corner
of display .

TAB Causes cursor to advance to next
column--the tab columns are every 8
characters .

CURSOR DOWN or LINEFEED - Causes a break
in BASIC execution of a program, causes
the cursor to move down one line .

ERASE LINE - Causes the cursor to return
to the beginning of the line and causes
the complete line to be erased . Also
causes the BASIC input line to be
;i.gnored .

- 1 03-

1 2 L 9 . 4

1 3 M 9 . 4

1 4 N 9 . 2

1 5 0 9 . 2

1 6 p 9 . 2

1 7 Q 9 . 2

1 8 R 9 . 2

1 9 s 9 . 2

20 T 9 . 2

2 1 u 9 . 2

22 v 9 . 2

23 w 9 . 2

24 X 9 . 6

25 y 9 . 4

26 z 9 . 4

ERASE PAGE - Causes the complete screen to
be erased and the cursor to be moved to
the home position . BASIC input ignores
this character .

CARRIAGE RETURN Causes the cursor to
move to the beginning of the line it is
presently on. Causes BASIC input to
accept the typed line and process as a
statement or input data .

A7 ON Turns the A7 flag on. (2x
character height and also stop bit .)

BLINK/A7 OFF - Turns the blink bit and A7
flag off.

BLACK KEY - Sets foreground color black if
flag is off and background black if flag
is on. (See codes 29 and 30 below .)

RED KEY - Same as above with color red .

GREEN KEY
green.

YELLOW KEY
yel low .

Same as above with color

Same as above with color

BLUE KEY - Same as above with color blue .

MAGENTA KEY - Same as above with color
magenta .

CYAN KEY - Same as above with color cyan .

WHITE KEY
white .

Same as above wi th color

XMIT - Causes data to be transmitted from
the visible cursor to the end of the page
or unti l an FF , O O sequence is found in
refresh RAM. Sends text charac ters with a
linefeed and carriage re turn at end of
each line . NOTE : Color status is not
sent .

CURSOR RIGHT - Causes the cursor to move
right 1 positio n . On BASIC input displays
previous character input .

CURSOR LEFT - Causes the cursor to move
left 1 position . On BASIC input deletes
previous character from input buffer .

- 1 0 4-

27 [

28 I 9 . 4

29] 9 . 2

30 9 . 2

3 1 9 . 2

C . 2 STATUS WORD F ORMAT

A7 A6 A5

ESC - Provides an entry to the escape code
table -- must be followed by one or more
codes for proper operaton.

CURSOR UP - Causes the cursor to move up
one line .

FG ON/FLAG OFF - Sets the flag bit off.
If followed by one of the color keys it
will s.et the foreground to that color .
Also , does not change input codes in the
range 96 to 1 27 that are to be stored in
the display memory , i . e . the shifted
alphabetic characters are displayed as
shown in columns 6 and 7 in the COMPUCOLOR
II character set in Appendix F . In plot
mode OR ' s " ON" · bits .

BG ON/FLAG ON - Sets the flag bit on . If
followed by one of the color keys it wil l
set the background to that color. With
the FLAG on the shifted alphabetic
characters 96 to 1 27 are converted into 0
to 3 1 when stored in the display memory ,
l . e . the characters displayed are shown in
columns 0 and 1 in Appendix F . In plot
mode XOR ' s "ON" bit s .

BLINK ON - Turns on the blink b i t which
will blink the foreground color against
the backround color.

A4 A3 A2 A1 AO

BACKGROUND COLOR FOREGROUND COLOR
PLOT BLINK

BLUE GREEN RED BLUE GREEN RED

- 1 05-

C . 3 ESCAPE CODES

To enter an escape code sequence , depress the ESC key fol lowed by
the desired character key .

ESCAPE
CODE

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

KEY

A

B

c

D

E

F

G

H

I

J

K

L

M

N

0

p

Q

SECTION EXPLANATION

9 . 4

9 - 3

9 . 6

1 0 . 1

1 . 2

9 -7

1 0 . 1

9 . 7

9 . 8

9 . 4

9 . 4

9 - 7

9 . 6

Used for terminal control--not available
for any other use .

Blind cursor mode .

Plot via color pad .

Transmit cursor X , Y position to RS-232C
port .

Enters Disk File Control System (F CS) with _
CRT as output .

Re-entry to DISK BASIC .

Sets ful l duplex mode , not functional when
in BASIC . The BREAK key restores t o half
duplex when in terminal mode .

Enters Disk F ile Control System (FCS) with
RS-232C port as output .

Sets hal f duplex mode .

Causes a program jump to location 36 86 4 .
(9000 HEX)

Sets write vertical mode .

Sets scroll up and write left to right
mode .

Se ts local mode .

Sends all output to the RS-232C port .

Set to ignore all inputs . In BASIC POKE
must be used to reset back to normal , or
hit CPU RESET .

Not used .

Not used .

Not used .

- 1 06 -

1 8 R 9 . 6 Baud rate selection mode . A7 on = 1 stop "----"'
bit , A7 off = 2 stop bits . See Appendix
C . 4 below for the next key to specify the
baud · rate .

1 9 s 9 . 8 Causes a program jump to location 40960 .
(AOOO HEX)

20 T 9 . 8 Causes a program jump to location 33280 .
(8200 HEX)

21 u Not used .

22 v Not used .

23 w 1 . 2 Initializes and transfers control to DISK
BASIC 800 1 .

24 X 9 . 4 Sets terminal to page mode and write left
to right mode .

25 y 9 . 8 Test mode fill page with next
character .

26 z Not used .

27 [9 . 4 Visible cursor mode . Also used t o exit
FCS.

28 I Not used .

29] Not used .

30 9 . 8 User definable escape code . Causes a
program jump to locaton 33275 . (8 1 BF HEX)

3 1 Transfer control to the CRT mode .

C . 4 BAUD RATE SELECTION

Number Key 2 3 4 5 6 . 7

Baud Rate 1 1 0 1 50 300 1 200 2400 4 800 9600

- 1 07-

C . 5 GRAPHIC PLOT SUBHODES

DISK BASIC PLOT OPTIONAL
or FUNCTION

RS-232C CODE PLOT SUBMODE KEYBOARD

255 Plot Mode Escape F 1 5

254 Character Plot F 1 4

c
253

J
X Point Plot F 1 3

y Point Plot F 1 2 25 2

25 1 X-Y Incremental Point Plot F 1 1

�0� XO of X Bar Graph F 1 0

l

249 y of X Bar Graph F 9

X max of X Bar Graph F 8 248

247 Incremental X Bar Graph F 7

246 YO of Y Bar Graph F 6

(245
)

X of Y Bar Graph F 5

Y max of Y Bar Graph F 4 244

243 Incremental Y Bar Graph F 3

c
242

J

xo Vector Plot F 2

YO Vec tor Plot F 1 24 1

240 Incremental Vector Plot F 0

For incremental plot submodes see the format of the incremental
direction codes below.

C . 6 INCREMENTAL DIRECTION CODES

4 X1 6 Y 1 A X2 A Y2

A7 A6 A5 A4 A3 A2 A1 AO

+ - + - + - + -

80 40 20 1 0 8 4 2 1

- 1 08-

D . INTERNAL FEATURES

D . 1 Key Memory Locations

24576 to 2867 1 = Screen refresh RAM (F ast) 6000-6FFF HEX
28672 to 32767 = Screen refresh RAM (Slow) �000-7FFF HEX
32940 = Points to maximum RAM used by BASIC
32980 = Points to start of BASIC source
3 2982 = Points to end of source and start of variables
32984 = Points to end of variables and start of arrays
32986 = Points to end of arrays
3320 9 = 0 to 5 9 seconds of Real Time Clock
3 32 1 0 = 0 to 5 9 minutes of Real Time Clock
3321 1 = 0 to 23 hours of Real Time Clock
3 32 1 5 = User ESCAPE jump vector
3321 8 = User output FLAG jump vector
3322 1 = User input FLAG jump vector
3 3224 = User timer no 2 jump vector
33228 = External output port buffer
3 3247 = Keyboard FLAG .
33249 = FCS output FLAG
3 3 25 1 = Input port FLAG
3 3 26 5 = BASIC output FLAG
3 327 2 = Output port FLAG
3 3 27 3 = LIST output FLAG
3 3 27 8 = Keyboard character
3327 9 = Keyboard character ready FLAG
33282 :: Location of CALL(x) jump
33285 = BASIC output vector location
33289 = Number of charac ters on terminal output
33433 = Start of BASIC source code
65535 = Maximum Amount of RAM

D . 2 PORT ASSIGNMENTS

PORT IJ I/ 0 PORT ADDRESS

HEX

0 - F TMS 550 1
1 0 - 1 F TMS 550 1 Duplicate Addresses
20 - 5F Not Assigned
60 - 6F SMC 5 0 27
70 - 7F SMC 5 0 27 Duplicate Addresses
80 - FF Not Assigned

- 1 0 9-

PORT II

HEX DEC

0 - 0
1 - 1
2 - 2
3 - 3
lj - lj
5 - 5
6 - 6
7 - 7

8 - 8
9 - 9
A - 1 0
B - 1 1
c - 1 2
D - 1 3
E - 1 ll
F - 1 5

PORT II

HEX DEC

60 - 96
6 1 - 97
6 2 - 9 8
6 3 - 9 9
6 ll - 1 00
65 - 1 0 1
6 6 - 1 02
67 - 1 0 3
6 8 - 1 0ll
6 9 - 1 05
70 - 1 06
6 B - 1 07
6 C - 1 0 8
6 D - 1 0 9
6 E - 1 1 0
6F - 1 1 1

WARNING :

TMS 550 1 I/0 CHIP (See Appendix G . 2)

Read Serial Data in from RS-232C interface
Read Paral lel Data from keyboard and disk
Read Interrupt Address on TMS 550 1
Read Status on TMS 550 1
Issue Discrete Command
Set Baud Rate on Serial I/ 0
Transmit Serial Data to RS-232C interface
Transmit Parallel Data .to keyboard and disk (also
controls Disk R/ W)
Load Interrupt Mask Register
Interval Timer 11 1
Interval Timer 112
Interval Timer #3
Interval Timer #ll
Interval Timer 115
No Function
No Function

SMC 5027 CRT CHIP (See Appendix G . 3)

Load Register 0 - Don ' t Load
Load Register 1 - Don ' t Load
Load Register 2 - Don ' t Load
Load Register 3 - Don ' t Load
Load Register lj - Don ' t Load
Load Register 5 - Don ' t Load
Load Register 6 - Roll Regis ter/1
Processor Load Command - Don ' t Use
Read Cursor X Regis ter
Read Cursor Y Register
Issue Reset Command - Don ' t Issue
Scroll up 1 line
Load Cursor X Register
Load Cursor Y Register
Load Start Timing - Don ' t Load
Self Load Commad - Don ' t Use

'
Do not output any values to the SMC 5027 CRT chip .

- 1 1 0 -

D . 3 COMPUCOLOR Fifty Pin Bus

PIN .DESIGNATION PIN DESIGNATION

1 +1 2V 26 D2 BUS
2 mt 27 A2
3 lm 28 D3 BUS
4 I!o w 29 A3
5 4>2 (+1 2V) 30 D7 BUS
6 4>2 TTL 3 1 A4
7 4:J1 (+ 1 2V) 32 D6 BUS
8 1 7 . 97 1 2 MHz 33 D4 BUS
9 SYNC 34 D5 BUS
1 0 RESET . 35 A6
1 1 -5 V 36 DO 80 80
1 2 +5 V 37 A7
1 3 GND 38 D1 80 80
1 4 m 39 A8
1 5 A 1 0 40 D2 80 80
1 6 READY 4 1 A 1 4
1 7 NO CONNECTION 42 D3 80 80
1 8 NO CONNECTION 43 D4 80 80
1 9 HOLD 44 A9
20 A5 45 A1 3
2 1 A 1 1 46 D7 80 80
22 DO BUS 47 A1 2
23 AO 4 8 A1 5
24 D1 BUS 49 D5 80 80
25 A1 50 D6 80 80

D . 4 RS-232C INTERFACE

CPU EDGE R3-232C SIGNAL NAME
CONNECTOR :fl PIN H AND LINE

1 pur< l'tt AA Protective Ground
3 Rf-iJ 2 BA Transmitted Data
5 13 Ll.l {:- 3 BB Received Data
7 "" "' ' rt= 4 CA Request to Send
1 4 /31.-!!tli 7 AB Signal Ground
1 5 o <l 4 £>. :'!- 20 CD Data Terminal Ready

- 1 1 1 .-

E . ASCII VALUES

DECIMAL CHARACTER DECIMAL CHARACTER DECIMAL CHARACTER

000 NULL 0 4 8 0 096
00 1 AUTO 049 1 0 97 a
002 PLOT 050 2 0 9 8 b
003 CURSOR X , Y 05 1 3 0 9 9 c
004 (not used) 052 4 1 00 d
005 (not used) 053 5 1 0 1 e
006 CCI 0 5 4 6 1 0 2 f
007 (not used) 055 7 1 0 3 g
008 HOME 056 8 1 0 4 h
009 TAB 057 9 1 05 i
0 1 0 LINEFEED 058 1 0 6 j
0 1 1 ERASE LINE 059 1 07 k
0 1 2 ERASE PAGE 060 < 1 0 8 1
0 1 3 RETURN 06 1 = 1 0 9 m
0 1 4 A7 ON 062 > 1 1 0 n
0 1 5 BLINK/A7 OFF 063 ? 1 1 1 0
0 1 6 BLACK KEY 064 @ 1 1 2 p
0 1 7 RED KEY 065 A 1 1 3 q
0 1 8 GREEN KEY 066 B 1 1 4 l'
0 1 9 YELLOW KEY 067 c 1 1 5 s
0 20 BLUE KEY 068 D 1 1 6 t
0 2 1 MAGENTA KEY 069 E 1 1 7 u
0 22 CYAN KEY 070 F 1 1 8 v
0 23 WHITE KEY 07 1 G 1 1 9 w
0 24 XMIT 072 H 1 20 X
0 25 CURSOR RIGHT 073 I 1 2 1 y
0 26 CURSOR LEFT 074 J 1 22 z
027 ESC 075 K 1 23 {
028 CURSOR UP 076 L 1 24 I
029 F G ON/FLAG OFF 077 M 1 25 }
030 BG ON/FLAG ON 0 7 8 N 1 26
0 3 1 BLINK ON 079 0 1 27 DEL
0 3 2 SPACE 0 80 p
0 33 I 0 8 1 Q
034 II 082 R
0 35 tl 083 s
0 36 $ 084 T
0 37 % 0 85 u
0 3 8 & 0 86 v
0 3 9 0 87 w
0 40 (0 8 8 X
0 4 1) 089 y
0 42 * 090 z
0 43 + 0 9 1 [
0 4 4 092 I
0 45 ...; 093]
046 0 9 4
047 I 095

- 1 1 2-

�. I ��,1 � !
N ...

I I I� I� (P. �� �tt- -$- -$-z

:! -t -t -$- w -$- -$-
t t �t -$ -$ -$­
W $ -$- � � _m_ N N � � � �

-

Li-J .

w �� it t- -$. -$-� � N � te

t -t -t -t;i 41- -$- �
t- -t W f -$- -$- �
-t -Ei -t � � -$- �
t � t- W t- -$- �

'

� � H � � � � � � � � � D � � � a
� a M � � � o � m � rn o s � g a �
� � � � � B � � � � � � B � B � D
� � � � � � � � � � B � � � � � �
� � B � � � � � � m � s a � � � �
N o a � � � � � � � � � ffi G rn o �
- � � � � � � � � � � � D � D � D
o � D D D D D � � � � � � D D D D

o - � � v � � � m � Q = � � � �
'

.J

TMS 8080 MICROPROCESSOR
APPENDIX G . 1

1 . ARCHITECTU R E

1 . 1 I NTRODUCTION

The TMS 8080 is an 8-bit para l le l central processing unit (CPU) fabricated on a s ingle chip us ing a h igh -speed N -channel

s i l icon-gate process. (See F igure 1) . A complete m icrocomputer system with a 2 -JJS instruction cycle can be formed by

i nterfacing this ci rcu it with any appropriate memory. Separate 8-bit data and 1 6-bit address buses s implify the interface

and al low direct addressi ng of 65, 536 bytes of memory. Up to 256 input and 256 output ports are also provided with

direct addressi ng. Control signa ls are brought d i rectly out of the processor and all s ignals, exc ludi ng c locks, are TTL

compatible.

1 .2 THE STACK

The TMS 8080 i ncorporates a stack architecture in which a portion of external memory is used as a pushdown stack for

stori ng data from working registers a nd i nternal mach ine status. A 1 6-bit stack pointer (SP) is provided to faci l itate

stack location i n the memory and to al low al most un l imited interrupt h andl ing capabi l ity . The CALL and R ST (restart)

i nstructions use the SP to store the program counter (PC) i nto the stack. The R ET (return) instruction uses the SP to

acqu.ire the previous PC value. Additional instructions al low data from registers and f lags to be saved in the stack .

1 .3 R EG ISTERS

The TMS 8080 has three categories of registers: general registers, program control registers, and i nternal registers. The

general registers · and program control registers are l isted i n Table 1 . The i nternal registers are not accessible by the

programmer. They include the instruction register, which holds the present instruction, a nd several temporary storage

registers to hold internal data or latch input and output addresses and data.

. 8

16

F I G U R E 1 -TMS 8080 FUNCTIONAL BLOCK DIAGRAM

1 .4 THE AR ITHMET I C UNIT

Arithmetic operations are perfor med in an 8-bit para l lel arithmetic un i t that has both b inary and decimal capa bi l i t ies .

Four testable internal f lag b its are provid d to fac i l i tate program control , and a f ifth f l ag i s used for decimal

corrections. Table 2 defines these f lags and the i r operat ion. Decimal correct ions are performed w i th the DAA

instruction . The DAA corrects the resu l t of b inary arithmet ic operation on HCD data as shown i n Table 3.

1 .5 STATUS AND CONT ROL

Two types of status are provi ded by the TMS8080. Certa i n status i s i nd icated by dedicated control l i nes. Addit ional

status is transmitted on the data bus during the beginning of each i nstruction cycle (mach i ne cycle) . Table 4 i nd icates

the pin fu nctions of the TMS8080. Table 5 defi nes the status i nformation that is presented dur ing the beginning ot each

machine cycle (SYNC time) on the data bus.

1 .6 1 /0 OPE R ATI ONS

I nput/output operat ions (1 /0) are performed us ing the I N and OUT i nstructions. The second byte of these instruct ions

indicates the device address (256 device addres�es) . When an IN i nstruction is executed, the input device address

appears in dupl icate on A 7 through AO and A 1 5 through A8, along with WO and I N P status on the data bu�. The

addressed input device then puts its i nput data on the data bus for entry i nto the accumulator . When an OUT

i nstruction i s executed, the same operation occurs e x.cept that the data bus has OUT status and then has output datc.t.

D i rect memory access channels (DMA) can be O R - t ied di rectly with the data and address buses through the u sH of the

HO LD and H LDA (ho ld acknowledge) controls . When a HOLD request is accepted by the CPU , H LDA goes h igh, the

address and data l ines are forced to a h igh-impedance or "floating" cond it ion, and the CPU stops unti I the H O L D

request i s removed.

I nterfac ing with d i fferent speed memories is easi ly accomplished by use of the WAIT and R EADY p ins. Dur ing each

mach i ne cycle , the CPU polls the R EADY input and enters a wait condit ion until th e R EADY l i ne becomes true. When

the WA I T output pin is h igh, it indicates that the CPU has entered the wait state .

Des ign i ng i nterrupt dr iven systems is s imp l if ied through the use of vectored i nterrupts. At the end of each i nstruct ion,

the CPU pol l s the I NT i nput to determine if an interrupt request i s being m ade . This actio n does not occur if the CPU i s in

the HOLD state or i f i nterrupts are d i sa bled . The I NT E output indicates if the interrupt logic is enabled (I NT E i s h igh) .

When a request i s honored , the I NTA status b i t becomes high, and a n RST instruction m ay be inserted to force the CPU

to jump to one of eight possible locations. Enabl ing or d isab l ing interrupts is control led by spec ia l instructions (E I or

D l) . T he interrupt i nput is automatical ly d i sabled when an i nterrupt request is accepted or .when a R ESET signal is

received .

1 .7 I NSTR UCTION T I M I NG

The execution t i me of the i nstructions var ies dependi ng on the operation requ ired and the number of memo ry

references needed. A machine cycle is defined to be a memory referencing operation and is e ither 3 , 4 , or 5 state t imes

long. A state t i me (des ign ated S) is a fu l l cycle of clocks ¢1 and cf>2. (NOTE : The exceptioh to this ru le i s the DAD

i nstruct ion, wh ich consists of 1 memory reference i n 10 state t ime>) . The fi rst mach i ne cycle (designated M 1) i s e ither 4

or 5 state t imes long and is the "i nstruct i on fetch " cycle w i th the program counter appear ing on the address bus. The

CPU then con ti nues with as many M cycles as necessary to complete the execution of the in�truct ion (up to a

maximum of 5) . Thus the instruct ion execution t ime varies from 4 state ti mes (several includi ng AD Drl to 1 8 (XT H L) .

The WAIT o r H O L D condi tions may affect the execution time si nce they can b e used to control the mach ine (for

example to "single step ") and t he H A LT i nstruction forces the CPU to stop unt i l an i nterrupt is rece ived . As the

instruct ion execution is comp leted (or i n the HALT state) the I NT pin is pol led for an i nterrupt . In the eve nt of an

interrupt, the PC w i l l not be i ncremented dur ing the next M l and an RST i nstruction can be i nserted.

NAME

Accumulator

B Register

C Register

D Register

E Register

H Register

L Register

Program Counter

Stack Pointer

Flag Register

DESIGNATOR

. A

B

c
D

E

H

L

PC

SP

F

TABLE 1

TMS 8080 REGISTERS

LENGTH

8

8

8
B

8

8

8

1 6

1 6

5

PURPOSE

Used for arithmetic, logicai, and 1/0 operations

General or most significant 8 bits of double register BC

General or least significant 8 bits of double register BC

General or most significant 8 bits of double register DE

General or least significant B bits of double register DE

General or most significant 8 bits of double register H L

General o r least significant B bits of double register H L

Contains address of next byte t o be fetched

Contains address of the last byte of data saved in

the memory stack

Five flags (C, Z, S, P, C1)

N OT E : Registers B and C may be·· used together as a single 1 6-b it register, l i k ewise, D and E , and H and L.

SYMBOL TESTABLE

c ¥ES

z YES

s YES

p YES

C1 NO

c
0

0

0

1

1

1

0

0

0

TABLE 2
F LAG DESCRIPTIONS

DESCRIPTION

C is the carry/borrow out of the. MSB (most signif icant bit) of the ALU (Arithment Logic

Unitl . A TRUE condition (C = 1) indicates overflow tor addition or underflow for

subtraction.

A TRUE condition I Z = 1) indicates that the output of the ALU is equal to zero.

A TRUE condition IS =: 1) indicates that the MSB of the ALU output is equal to a one (1) .

A TRUE condition (P = 1) Indicates that the output of the A L U has even parity (the

number of bits equal to one is even) .

C 1 is the carry out of the fourth bit of the ALU (TRUE condition) . C 1 is used on ly for BCD

correct ion with the DAA instruction.

TABLE 3

FUNCTION OF THE DAA I NSTRUCTION

Assume the accumulator"! Al contains two BCD digits, X and· v

7 4 3 0
ACC X I y

ACCUMULATOR ACCUMULATOR

BEFORE DAA AFTER DAA

A7 , , .A4 C1 A3 . . . AQ c A7 ; . . � C1 A3 • . · Ao
X < 1 0 0 v < 1 0 0 X 0 y
X < 1 0 1 y < 1 0 0 X 0 Y + 6

X < 9 0 y .. 1 0 0 X + 1 1 V + 6

X < 1 0 0 y < 1 0 1 · X + 6 0 y
X < 1 0 1 y < 1 0 1 X + 6 0 Y + 6

X < 1 0 0 y ;;. 1 0 1 X + 7 1 Y + 6

X ;;. 1 0 0 y < 1 0 1 X + 6 0 y
X ;;. 1 0 1 y < 1 0 1 X + 6 0 Y + 6

X ;;> 9 0 y .. 1 0 1 X + 7 1 Y + 6

N O T E : The corrections shown i n Table 3 are sufficient for addition. For sui;Jtraction, the programmer must account f o r the borrow
condition that can occur and give erroneous results. The most straight forward method is to set A = 99 1 6 and carry = 1 . Then
add the m inuend to A after subtracting the subtrahend from A.

TABLE 4
TMS 8080 PIN D E F I N I TIONS

SIGNATU RE P IN 1/0 DESCR IPTION

A15 (MSB) 36 OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

A 15 through AO comprise the address bus. True memory or I /0 device addresses appear on
this 3-st?•e bus during the first state time of each instruction cycle. A14 39

A 1 3
A 1 2
Al l
A l O
A9

AS
A7

A6
A5
A4
A3
A2
Al
AO (LSBI

07 (MSB)
06
05
04
D3
D2
Dl

DO (LSBI

Vss
Vas
Vee
vDD

<t>l

<t>2

RESET

HOLD

INT

I NTE

DB I N

38
37
40

1
35
34
33
32
31
30
29
27
26
25

6 IN/OUT
5 IN/OUT
4 · IN/OUT
3 IN/OUT
7 IN/OUT
8 IN/OUT
9 IN/OUT

1 0 IN/OUT

D7 through DO comprise the bidirectional 3-state data bus. Memory , status, or 1 10 data is

transferred on this bus.

2 Ground reference

1 1 Supply voltage (- 5 V nominal)

20 Supply voltage (5 V nominal)

28 Supply voltage (1 2 V nominal)

22

1 5

1 2

1 3

1 4

1 6

1 7

IN

I N

I N

I N

I N

OUT

OUT

Phase 1 clock.

Phase 2 c lock. See page 1 9 for ¢1 and ¢2 t iming.

Reset. When active (h igh) for a minimum of 3 clock cycles, the R ESET input causes the

TMS 8080 to be reset. PC is cleared, interrupts are disabled, and after A ES ET , instruct ion
execution starts at memory location 0. To prevent a lockup condition, a HALT instruction
must not be used in location 0.

Hold signal. When active (high) HOLD causes the TMS 8080 to enter a hold state and f loat

(put the 3-state address and data bus in a high-impedance state) . The chip acknowledges
entering the hold state with the H LDA signal and wi'l l not accept interrupts u n t i l it leaves
the hold state.

I nterrupt request. When active (h igh) INT ind icates to t h� TMS8080 tha t an interrupt is

being requested. The TMS8080 polls INT during a HALT or at the end of an i nstruction.

The request wil l be accepted except when I NTE is low or the CPU o s i n the HOLD
condition.

I nterrupts enabled. I NTE indicates that an in ten upt wi l l be accepted by the TMS 8080
unless it is in the hold state. I NTE is set to a high logic level by the El (E n able I nterrupt)

instruction and reset to a low logic level by the D l (Disable I nterrupt) instruct ion . I NTE is
also reset when an interrupt is accepted and by a high on R ESET.

Data bus in. DB IN indicates whether the data bus is in an input or an output mode.
(high = input, low c output) ,

2.

SIGNATURE PIN

WR 1 8

SYNC 19

H LDA 2 1

READY 23

WAIT 24

1 /0

OUT

OUT

OUT

I N

OUT

SIGNATURE DATA BUS BIT

INTA DO

wo D1

STACK D2

HLTA D3

OUT D4

M1 D5

INP D6

MEMR D7

TMS 8080 I NST RUCTION SET

TABLE 4 (CONTINUED)

DESCRIPTION

Write. When active (low) WR indicates a write operation on the data bus to memory or to an
1 /0 port.

Synchronizing control l ine. When active (high) SYNC indicates the beginning of each
machine cycle of the TMS8080. Status i nformatica is also present on the data bus during
SYNC for external latches.

Hold acknowledge. When active (h igh) H LDA indicates that the TMS 8080 is in a hold state.

Ready control l ine. An active (h igh) level indicates to the TMS 8080 that an external device
has completed the transfer of data to or from the data bus. R EADY is used in conjunction
with WAIT for different memory speeds.

Wait status. When active (h igh) WA IT indicates that the TMS8080 has entered a wa it state
pending a R EA DY signal from memory.

TABLE 5

TMS 8080 STATUS

DESCRIPTION

Interrupt acknowledge.

I ndicates that current mach ine cycle wi l l be a read (i nput) (h igh = read) or a write (output)
(low =· write) operat ion.

Indicates that address is stack address from the SP.

HALT instruction acknowledge.

I ndicates that the address bus has an output device address and the data bus has output
data.

I ndicates instruction acquisition for f i rst byte.

I ndicates address bus has address of input device.

I ndicates that data bus will be used for memory read data.

2.1 I NST R UCTI ON FORMATS

TMS 8080 instructions are e ither one, two, or three bytes long and are stored as bi nary integers in successive memory

locations in the format shown be low.

One- Byte I nstructions

D 7 D6 D 5 D4 D 3 D2 D1 DO OP CODE

Two-Byte I nstructions

D 7 D6 D 5 D4 D 3 D2 D1 DO OP CODE

D7 D8 D 5 D4 D3 D 2 D 1 DO OPE RAND

Three-Byte I nst ruct ions

D7 D6 D5 D 4 D 3 D 2 D1 DO OP CO D E

D7 D6 D 5 D 4 D3 D 2 D 1 D O LOW AD D R ESS O R OPE RAND 1

D7 D6 D 5 D4 D3 D2 D 1 D O H I G H ADDR ESS O R OPE RAND 2

2.2 I NSTR UCTION SET DESC R IPTION

Operations resu l t ing from the execut ion of TMS 8080 instructions are described i n th is sect ion . The f l ags that are a ffected hy

each instruction are given a fter the descript ion.

2.2.1 I NSTR UCTI ON SYMBOLS

SYMBOL
<b2>

<b3>

ra

M

()

I I

Am
I I
b2

b3b2
(nnn) 8

Second byte of instruction

Third byte of i nstruction

Register #
000

00 1

0 1 0

0 1 1

1 00

1 0 1

1 1 1

Register #
00

0 1

1 0

1 1

Register #
0

Regi ster #
00

0 1

1 0

Least s ign if icant 8 bits of r d
Most s ign i f icant 8 bits of r d

DESCR I PT I ON

F lags True cond i t ion

Zero (Z) Resu l t i s zero

Regi ster Name

B

c
D

E

H

L

A
R eg ister N ame

BC

D E

H L

SP

R egister N ame

BC

D E

Register N ame

BC

D E

H L

Carry (C) Carr y/borrow ou t of MSB is one

Parity (P) Par i ty o f resul t i s even

Sign (S) MSB of resu l t i s one

Carry 1 (C 1) Carry out of fourth bit i s one

Memory address de l ined by registers H antl L

Contents of speci f ied address or r eg i ster

Contents at address contained in specif ied regi ster

Is t ransferred to

E xchange

B i t m of A re�ister (accu mulator)

F l ags affected

Single by te irnmed rate operand

Double byte immedrate operand

(nnn) is an octal (b<Jse 8) number

2.2.2 ACCUMU LATOR G ROUP INSTRUCTI ONS

M NEMONIC OPERANDS BYTES

ACI b2 2

ADC
ADC
ADD

ADD
AD I
ANA

ANA
AN I
CMA

CMC
CMP

CMP
CPI
DAA

DAD

LDA
LDAX
ORA

ORA
ORI
RAL

RAR
R LC

A RC

M
ra
M

ra 1
b2 2
M

ra 1
b2 2

M

2

rb

b3b2 3
rc.
M

ra
b2 2

M CYCL ES/

STATES

2/7

2/7
1 /4
2/7

1 /4
2/7
2/7

1 /4
2/7
1 /4
1 /4
2/7

1 /4
2/7
1 /4

1 / 1 0

4/ 1 3
2/7
2/7

1 /4
2/7
1 /4

1 /4
1 /4

1 /4

D E SC R IPT I O N

(A I · (A I + <b2> + (carry l , add the second byte of the
mstrur.tion and the contents of the carry f l ag to register A and
place 1n A . I C ,Z ,S,P,C 1 I

(AI · (A I + (M I + (carryl . l C,Z ,S,P,C 1
(A I · (A) + (ral + (carry) . I C,Z ,S ,P,C 1 I
(A) · (A I + (M I . add the contents of M to register A and place in
A. I C ,Z ,S,P,C 1 1
(AI · IA I + (ral . l C,Z,S,P,C1 I
(A I · (AI < · · b2 . · . I C ,Z,S,P,C 1 I
(AI • (A) AND (M I . take the log ica l AND of M and regtster A
and place in A . The carry f lag wi l l be reset low . l C,Z,S,P,C 1 1
(A) -· (A) AND (ral . I C ,Z ,S,P,C 1 I
(A) - (A I AND <b2>. I C,Z,S,P,C 1 I
(A I • · (A) , complement A .
(carry) • · (carry) , complement the carry f lag. jc I
(A I (M) , compare the contents of M to registP.t A and set the
f lags accordingly. ! C ,Z,S,P,C 1 1

(A) " (M I Z :. 1
(A I • (M I Z ; 0
(A I · IM I C • 1
(A I I M I C = 0

(AI I ra I . I C,Z,S,P ,C1 I
(AI - <b2 j c,Z,S ,P ,C J I
(A)• ·BCD correction of (A I . The 8 bi t A contents is corrected to
form two 4 bit BCD digtts after a binary ari thmetic operat ton. A
f i fth f lag C 1 t ndicates the overf low f rom A3. The carry f lag C
mdicates the overf low f rom A7 (See Table 3 1 . ! C .Z ,S,P,C 1 1
(H L I · (H L) ·• (rb) , add the contents of double register rb to
double • egister HL and place in HL . \C I
(A I · I · b3 <b2 > i
IA I · l l r cl l
(A) • fA) O R (M I . take the logtca l O R of the contents of M and
regtstet A and place in A. The carry f lag wi l l be reset.
l c.z.s P.c 1 !
(A) • (A) OR (ra i . I C.Z,S,P ,C 1 1
I A I · (A) OR <b2 > . I C .Z,S,P,C 1 1
Am·•T Am. Ao• · (carry) , (carryi •·· IA 7I . Sh ift the contents of
regtster A to the left one bit through the carry f lag. j C I
Am· ·Am+ 1 , Ar-(carry l , (carry) •··Ao. \ C I
Am < 1 ' ·Am. Ao..-·A7 (carry)�(A71 . Sh i f t the contents of register
A to the left one bi t . Sh i f t A7 into A and tn to the carry
flag. ! C I
Am�·Am+ 1 · A r- Ao. (carry)•-(Aol . j c I

MNEMONIC OPERANDS

SB B M

SBB ra
SBI b2
STA b3b2

STAX rc

STC

SUB M

SUB ra
SUI b2
XRA M

XRA ra
XAI b2

BYTES

1
2
3

1
2

1
2

2.2.3 I NPUT/OUTPUT I NSTRUCTIONS

MNEMONIC OPERANDS BYTES

I N b2 2

OUT b2 2

2.2.4 MACH I N E I NSTR UCTIONS

MNEMONIC OPERANDS BYTES

H LT

NOP

M CYCLES/

ST \TES

2/7

1 /4
2/7

4/1 3

2/7

1 /4

2/7

1 /4
2/7

2/7

1 /4
2/7

M CYCLES/

STATES

3/1 0

3/1 0

M CYCLES/

STATES

2/7

1 /4

DESCR IPTION

I Al�IA)-(M)-Icarry) , subtract the contents of M and the
contents of the carry f lag from regoster A and place in A. Two's
complement subtraction is used and a true borrow causes the
carry flag to be set !underflow condi tion l . j C,Z ,S,P,C 1 f
IAl-(A)-(ral-(carryl . j c,Z,S,P,C l l
(A)<--(A)-<b2>-(carry) . j C,Z,S,P,C 1 1
[<b3> <b2> l <-(A), store contents of A o n memory address
given in bytes 2 and 3.
[(rcl l •-(A) , store contents of A in memory address given in BC
or DE.

(carry)- 1 , set carry f lag to a 1 l true condition) .

IA)•- IAl-IM) , subtract the contents o f M l rom register A and
place in A. Two's complement subtraction is used and a true
borrow causes the carry flag to be set (underflow condi tion) .
I C,Z,S,P,C1 1
IAl-IAl-lral. l C,Z,S,P,C l l
(AHAl-<b2> . j C,Z,S,P,C 1 1
(A)�(A) XOR (M) , take the exclusive OR of the contents of M
and register A and place in A. The carry flag wil l be reset .

I C,Z,S,P,C1 1
(AHA) XOR (ral . j C,Z,S,P,C 1 f
IA)�(A) XOR <b2> . j C,Z,S,P,C l f

DESCRIPTION

(A)-I onput data from data bus) , byte 2 os sent on bits A7·AO
and A 1 5-A8 as the input devoce address. INP status is given on
the data bus.
(Output data)•-(A), byte 2 os sent on bits A 7-AO and A 1 5·A8 as
the output device address. OUT status is given on the data b11s.

DESCRIPTION

Halt, al l machone operations stop. Al l registers are maintained.
Only an interrupt can return the TMS 8080 to the run mode,
Note that a HL T should not be placed in location zero,
otherwise after the reset pin is actove, the TMS 8080 wi l l enter a
nonrecoverable state lunti l power is r emoved) , i.e., in halt wi th
interrupts disabled. This condition also occurs if a H L T is
executed while interrupts are disabled. H L T A status is given on
the data bus.
IPCl-(PC)+ 1 , no operat ion.

2.2.5 PROG RAM COUNTE R AND STACK CONTROL I NSTRUCTIONS

MNEMONIC OPERANDS

CALL b3b2
BYTES

3

Conditional call instructions for true flags:
(f)

cc (carry) b3b2 3

CPE (parity) b3b2 3

CM (sign) b3b2 3

cz (zero) b3b2 3

Conditional cal l instructions for false flags:
(f)

CNC (carry) b3b2 3

CPO (parity) b3b2 3

CP (sign) b3b2 3

CNZ (zero) b:Jb2 3

D l

E l

JMP b3b2 3

Conditional jump i nstructions for true flags:
(f)

JC (carry) bJb2 3

JPE (parity) b3b2 3

JM (sign) bJb2 3

JZ (zero) b3b2 3

Conditional jump instructions for false flaqs:
(f)

JNC (carry) b3b2 3
JPO (parity) b3b2 3
JM (sign) bJb2 3
JNZ (zero) b3b2 3

PCH L
POP PSW

POP rd
PUSH PSW

PUSH rd
RET

M CYCLES/

STATES

5/1 7

5/1 7 (Pass)
3/1 1 (Fail)

5/1 7 (Pass)
3/1 1 (Fa i l)

1 /4

1 /4

3/1 0

3/1 0

3/1 0

1 /5

3/1 0

3/1 0

3/1 1

3/1 1

3/1 0

DESCRIPTION

[(SP) - 1) [(SP)-2) -(PC) , (SPI·- (SP) --2, (PCI�<b3> <b2 :.- .
transfer PC to the stack address given by SP, decrement SP
twice, and jump unconditional ly to address g1ven 1 n bytes 2 and
3.

If (f) = 1 , [(SP) - 1) [(SP) -2] · (PC) , (SP)�(SP I -2 . IPSI- '- b3>
<b2 >. otherwise (PC)· (PC)+3 . I f thf! f lag specified, f , is 1 , then
execute a cal l . Otherwise, execute the next instruct ion .

If (f) = 0, ((SPI - 1) ((SP I -2) · - (PC) , (SP) - - (SP I -2, (PC)·- - - b3
<b2>. otherwise (PC)�(PC)+3.

Disable interrupts. INTE i s driven fa lse to indicate that no
i nterrupts wil l be accepted.
Enable i nterrupts. INTE i s driven true to i ndicate that an
i nterrupt wil l be accepted. Execution of this instruction is
delayed to al low the next instruction to be executed before the
INT input is polled.
(PC).--<bJ> <b2>. jump uncondit ional ly to address given in
bytes 2 and 3.

I f (f) = 1 , (PCI�< b3><b2>, otherwise (PC)··- (PC) +3. I f the flag
specif ied, f , is 1 , execute a JMP. Otherwise, execute the nex t
instruction .

I f (f) = 0, (PCI<--<b3> <1'12>, othewise (PCI •-(PC)+3.

(PC)+-(HL)
(F)+- [(SP)] , (A)<-(('5P I+ 1] , (SP).-(SP)+2, restore the last
stack values addressed by SP into A and F. I ncrement SP twice.
(rdLI+- [(SP I] , (rdH I+-((SPI+ 1) . (SP)<--(SP) +2.
[(SP)-1] •-(A), ((SP)-2) <-(F) , (SP)+-(SP I -2, save the contents
of A and F i n to the stack addressed by SP. Decrement SP twice.
((SP)- 1) +-(rdL I . ((SP)-2) +-(rdH I . (SP) .. ·(SPI -2.
(PC)<-((SP) I ((SP)+ 1) , (SP)<-(SP)+2, return to program at
memory address given by last values in the - stack. The SP is
incremented by two.

MNEMONIC OPERANDS BYTES

Conditional return instructions for true flags:

(f)
RC (carry) c
APE (parity) p
RM (sign) s
RZ (zero) z

M CYCLES/

STATES

3/ 1 1 (Pass)
1 /5 (Fai l)

Conditional return i nstructions for f alse f lags:

(f)
RNC (carry) c
RPO (parity) p
RP (sign) s
RNZ (zero) z

RST

SPH L

2.2.6 REGISTER G R OUP INSTRUCTIONS

MNEMON IC OPERANDS

OCR M

OCR 'a
DCX 'b
I NR M

I N R 'a
I N X 'b

L H LD b3b2

LXI 'bb3b2

MVI M,b2

MVI rab2

MOV Mra

MDV raM

MOV 'a 1 r a2

SHLD b3b2

XCHG
XTH L

BYTES

1

3

3

2

2

. 3

3/1 1 (Pass)
1 /5 (Fail)

3/1 1

1 /5

M CYCLES/

STATES

3/ 1 0

1 /5
1 15

3/1 0

1 /5
1 /5

5/ 1 6

3/1 0

3/ 1 0

2/7

2/7

2/7

1 /5

5/Hi

1 /4
5/1 8

DESCRIPTION

II (f) = 1 , (PC) • - I (SP) I I (SP-t l) , (SP)•-(SP)+2. If the f l ag
specif ied, f, is 1 , execute a R ET. Otherwise, execute the next
i nstruction.

II (f) = 0, (PC)•- [(SP)] [(SP)+ 1] , (SP)- (SP)+2.

[(SPl - 1 1 ((SP l - 2] •- (PC) (SP) ·-(SP) -2, (PC)·-QOOOROg where
R is a 3 bit field in RST (RST=3R 7g) . Transfer PC to the stack
address given by SP, decrement SP twice, and jump to the
address specif ied by R.

(SP)+-(HL) .

DESCRIPTION

(M)•··(M) - 1 , decrement the contents of memory location
specified by H and L . j Z,S,P,C 1 \

l ral •-hal -- 1 , decrement the contents of mgtster 'a· I Z,S,P,C l l
(rb)+--(rb)- 1 , decrement double registers BC, D E , H L, or SP.

(M)•-(M) + 1 , increment the contents of memory location
spec ified by H and L. \ Z,S.P ,C 1

_
I

lral•-lral + l , i ncrement the contents of register ra. j Z,S,P,C1 f
(rbl�lrbl+ 1 , i ncrement double registers BC, D E , H L, or SP.

(L)•- [<b3> <b2>l ; (H)- l<b3> <b2 >+ 1 l , load registers H
and L with contents of the two memory locations spectfied
by bytes 3 and 2.
l rbH l�<b3> ; lrbLl-<b2>. load .double registers BC, D E , H L,
or SP immediate with bytes 3, 2, respectively.
IMl•· <b2>. store immediate byte 2 in the address specif ied by

H L
lral+-<b2>, 1oad register

.
' a immediate with byte 2 of the instruc·

tion .

(M) . . · l ral. store regtster 'a in the memory location addressed by
H and L.
l ral •- (M), load register 'a with contents ot memory addressed by
HL.
l ra1 l+- l ra2l . load register 'a 1 with contents of 'a2· ra2 contents
remain unchanged.
[..::bJ> <bi> I +-(L) ; l<b3> <b2 > + 1 l l +-(H) , store the contents
of H and L into two successive memory locations speci f ied by
bytes 3 and 2.
(H)-(0) ; (L) ·- I E l , exchange double registers H L and DE
I Ll�· (lSPl) , I H l - (ISPl + l I , ISPl=ISPl, exchange the top· of the
stack with register H L.

2.3 I NSTRUCTION SET OPCODES A LPHABETICALL V LISTED
POSITIV E-LOG IC

REGISTER HEX OPCODE C LOCK

MNEMONIC BYTES DESCRIPTION AFFECTED � � CYCL ES* ---
ACI 2 Add immediate to A with carryt c E 7
ADC M Add memory to A with carry t 8 E 7
ADC r Add register to A with carry t B 8 8 4

c 8 9
D 8 A
E 8 B
H 8 c
L 8 D
A 8 F

ADD M Add memory to At 8 6 7
ADD r Add register to At B 8 0 '4

c 8 1
D 8 2
E 8 3
H 8 4
L 8 5
A 8 7

ADI 2 Add immediate to At c 6 7
ANA M AND memory with At A 6 7
ANAr AND register with At B A 0 4

c A 1
D A 2
E A 3
H A 4
L A 5
A A 7

ANI 2 AND immediate with At E 6 7
CAL L 3 Cal l unconditional c D 1 7
cc 3 Call on carry D c 1 1 / 1 7
CM 3 Call on minus F c 1 1 /1 7
CMA Complement A 2 F 4
CMC Complement carry �: 3 F 4
CMP M Compare memory with At B E 7
CMP r Compare register with A

B B 8 4
c B 9
D B A
E B ' B
H B c
L B D
A B F

CNC 3 Call on no carry D 4 1 1 / 1 7
CNZ 3 Call on no zero c 4 1 1 / 1 7
CP 3 Call on positive F 4 1 1 /1 7
CPE 3 Call on parity even E c 1 1 / 1 7
CPI 2 Compare i mmediate with At F E 7
CPO 3 Call on parity odd E 4 1 1 /1 7
cz 3 Cal l on zero c c 1 1 / 17
DAA Decimal adjust At 2 7 4

• Two possib l e cycle times (1 1 /1 7) indicate instruction cyclea dependent on condition flags.
I A l l flags (C , Z , S, P, C 1) affected.
i o n l y carry flag affected.

POSITIVE-LOG IC
REGISTER HEX OPCODE CLOCK

MNEMONIC BYTES DESCRI PTION AFFECTED � � CYCLES

DAD B Add B&C to H& L�: 0 9 1 0

DAD C' Add D&E to H& L :I: 9 1 0
DAD H Add H&L to H& L J: 2 9 1 0
DAD SP Add stack pointer to H&L+ 3 9 1 0
O C R M Decrement Memory * 3 5 1 0
OCR r Decrement Register :i B 0 5 5

c 0 D
D 5
E D
H 2 5
L 2 D
A 3 D

DCX B Decrement B&C 0 B 5
DCX D Decrement D&E 1 B 5
DCX H Decrement H&L 2 B 5
DCX SP Decrement stack pointer 3 B 5
0 1 Disable interrupts F 3 4
El 1 Enable interrupts F B 4
H LT 1 Halt 7 6 7
I N 2 , I nput D B 1 0
I NR M I ncrement memory § 3 4 1 0
INA r I ncrement register � 8 0 4 5

c 0 c
D 4
E 1 c
H 2 4
L 2 c
A 3 c

I NX B I ncrement B&C register 0 3 5
I NX D I ncrement D&� register 1 3 5
INX H Increment H&L register 2 3 5
I NX SP 1 I ncrement stack pointer 3 3 5
JC 3 Jump on carry D A 1 0
JM 3 Jump on minus F A 1 0
JMP 3 Jump unconditional c 3 1 0
JNC 3 Jump on no carry D 2 1 0
JNZ 3 Jump on no zero c 2 1 0
JP 3 Jump on posi tive F 2 1 0
JPE 3 Jump on parity even E A 1 0
JPO 3 Jump on parity odd E 2 1 0
JZ 3 Jump on zero c A 1 0
LOA Load A direct 3 A 1 3
LDAX B Load A i ndirect 0 A 7
LDAX D 1 Load A indirect A 7
LHLD 3 Load H&L direct 2 A 1 6
LXI B 3 Load immediate register pair B&C 0 1 0
LXI D 3 Load immediate register pair D&E 1 1 0
LX I H 3 Load immediate register 2 1 0
LXI SP 3 Load immediate stack pointer 3 1 0

lonly carry flag affected.
li Al l flags except cerrv affected.

POSITIVE-LOG IC

R EG ISTE R HEX OPCODE CLOCK

MNEMONIC BYTES DESCRIPTION AFFECTED � � CYCLES

MDV M,r Move register to memory 8 7 0 7
c 7 1
D 7 2
E 7 3
H 7 4
L 7 5
A 7 7

MOV r,M Move memory to register 8 4 6 7

c 4 E
D 5 6
E 5 E
H 6 6
L 6 E
A 7 E

MOV q , r2 Move register to register 8,8 4 0 5
8,C 4 1
8,0 4 2
8,E 4 3
8,H 4 4
8,L 4 5
8 ,A 4 7
C,8 4 8
C,C 4 9
C,D 4 A
C,E 4 8
C,H 4 c
C ,L 4 D
C,A 4 F
D,B 5 0
D,C 5 1
D,D 5 2
D,E 5 3
D,H 5 4
H,L 5 ·5
D ,A 5 7
E,B 5 8
E ,C 5 9
E,D 5 A
E ,E 5 B
E,H 5 c
E,L 5 D
E,A 5 F

H,8 6 0
H ,C 6 1
H,D 6 2
H ,E 6 3
H,H 6 4
H ,L 6 5
H,A 6 7
L,8 6 8

R E G I ST E R

MNEMONIC B YTES DESC R I PT I O N AF FECTED

MOV r 1 . r2 Move register to register (continued) L,C
L,O
L,E
L,H
L,L
L,A
A,8
A,C
A,O
A,E
A,H
A,L
A,A

MVI M 2 Move immediate memory
MV I r 2 Move immediate register B

c
0
E
H
L
A

NOP 1 No operation 4
ORA M 1 OR memory with At

ORA r 1 . OR register with At 8
c
D
E
H
L

A
ORI 2 OR immediate with At

OUT ' 2 Output
PCH L H&L to program counter
POP 8 Pop register pair 8&C off stack
POP 0 Pop register pair 0& E ott stack
POP H Pop register pair H& L off stack
POP PSW Pop A and flags off stack t

PUSH B Push register pair B&C
PUSH 0 ,1 Push register pair O&C
PUSH H 2 Push register pair H&L on stack
PUSH PSW Push A and Flags on stack
RAL Rotate A left through carry :j:
RAR Rotate A right through carry :j:
RC Return on carry
RET Return
RLC Rotate A left +
R M Return o n minus
RNC Return on no carry
RNZ Return on no zero
RP Return on positive

• Two possible cycles t i mes (1 1 / 1 7) indicate instruction cycles dependent on condition flags.
t All flags (C , Z, S, P, C1) affected. ·
+ only carry flag affected .

POSITIVE-LOG I C

H E X OPCODE CLOCK

� � CYCLES*

6 9
6 A
6 B
6 c
6 0
6 F
7 8
7 9
7 A
7 B
7 c
7 0
7 F
3 6 1 0
0 6 7
0 E

6
1 E
2 6
2 E
3 E
0 0 4
B 6 7
B 0 4
8 1
8 2
a 3
8 4
B 5
8 7
F 6 7
0 3 1 0
E 9 5
c 1 0
0 1 0
E 1 0
F 1 0
c 5 1 1
0 5 1 1
E 5 1 1
F 5 1 1

7 4
1 F 4
0 8 5/1 1
c 9 1 0
0 7 4
F 8 5/1 1
0 0 5/1 1
c 0 5/1 1
F . o 5/1 1

MNEMONIC BYTES

APE
RPO
ARC
RST

RZ
SBB M
SBB r

SBI 2
SHLD 3
SPHL
STA 3
STAX B
STAX D
STC
SUB M
SUB r

SUI 2
XCHG
XRA M
XRA r

XRI 2
XTH L

DESCRIPTION

Return on parity even
Return on parity odd
Rotate A right+
Restart

Return on Zero
Subtract memory from A with borrowt

Subtract register from A with borrowt

Subtract immediate from A with borrowt

Store H&L direct
H&L to stack pointer
Store A direct
Store A indirect
Store A indirect
Set carry+
Subtract memory from At

Subtract register from At

Subtract immediate from At
Exchange D&E, H&L registers
Exclusive OR memory with At

Exclusive OR register with At

Exclusive OR immediate with At

Exchange top of stack H&L

REGISTER

AFFECTED

PC+-00001 6
PC+-00081 6

_ PC+-001 01 6
PC+-001 81 6
PC+-()020 1 6
PC+-00281 6
PC+-00301 6
PC+-00381 6

B
c :l
D
E
H
L
A

B
c
D·
E
H
L
A

B
c
D
E

H
L
A

' Two possible cycles times (1 1 / 1 7) ind icate instruction cycles dependent on condition flegs.
t All flags (C , Z, S, P, C 1) affected.
+ Only carry flag affected .

'1 .

POSITIVE-LOGIC

HEX OPCODE CLOCK

� � CYCLES•

E 8 5/1 1
E 0 5/1 1
0 F 4

1 1

c 7
c F
D 7
D F
E 7
E F
F 7
F F
c 8 5/1 1

9 E 7
9 8 4
9 9
9 A
9 a
9 c
9 D
9 F
D E 7
2 2 1 6
F 9 5
3 2 1 3

0 2 7
1 2 7
3 7 4
9 6 7
9 0 4
9 1

9 2

9 ' 3
9 4
9 5
9 7
D ' 6 7
E B 4
A E 7
A 8 4
A 9
A A
A B
A c
A D
A F
E E 7
E 3 1 8

APPENDIX G . 2

TMS 6601 MULTIFUNCTION INPUT/OUTPUT CONTROLLER

1. I NTRODUCTION

� 1 .1 DESCRIPTION :,
The TMS 5501 is a multifunction input/output circuit for use with Tl 's TMS 8080 CPU . I t is fabricated with the same
N-channel sil icon-gate process as the TMS 8080 and has compatible timing, signal levels, and power supply
requirements. The TMS 5501 provides a TMS 8080 microprocessor system with an asynchronous communications
interface, data 1 /0 buffers, interrupt control logic, and interval timers.

INT

t:::JSYNC CE

CONTROL
AD·Al

•

00·07

SENS

F IGURE 1 -TMS 5501 BLOCK DIAGRAM

The 1 /0 section of the TMS 5501 contains an eight-bit parallel input port and a separate eight-bit parallel output port
with storage register. F ive programmable interval timers provide time intervals from 64 IJS to 1 6.32 ms.

The interrupt system al lows the processor to effectively communicate with the interval timers, external signals, and the .
communications interface by providing TMS 8080-compatible interrupt logic with masking capability.

Data transfers between the TMS 5501 and the CPU are carried by the d(\ta bus and controlled by the interrupt, chip
enable, sync, and address l ines. The TMS 8080 uses four of its memory-address l ines t� select one of 14 commands to
which the TMS 5501 wil l respond. These commands al low the CPU to :

read the receiver buffer
read the input port
read the interrupt address
read TMS 5501 status
issue discrete commands
load baud rate register
load the transmitter buffer
load ttie output port
load the mask register
load an interval timer

(

The commands are generated by executing memory referencing instructions such as MOV (register to memory) with the
memory address being the TMS 550 1 command. This provides a high degree of flexibi l ity for 1 /0 operations by letting
the systems programmer use a variety of i nst1 uctions.

1 .2 SUMMARY OF OPE RATION

Addressing the TMS 5501

A convenient method for addressing the TMS 5501 is to tie the chip enable input to the h ighest order address l ine of
the CPU's 1 6·bit address bus and the four TMS 5501 address inputs to the four lowest order bits of the bus. Th is, of
course , l imits the system to 32,768 words of memory but in many applications the full 65,536 word memory
addressing capability of the TMS 8080 is not required.

Communications Functions

The communications section of the TMS 5501 is an asynchronous transmitter and receiver for serial communications
and provides the following functions:

Programmable baud rate - A CPU command selects a baud rate of 1 1 0, 1 50, 300, 1 200, 2400, 4800, or 9600 baud.

I ncomi ng character detection - The receiver detects the start and stop bits of an incoming character and places the
character in the receive buffer.

Character transmission - The transm itter generates start and stop bits for a character received from the CPU and
shifts it out.

Status and command signals - Via the data bus, the TMS 5501 signals the status of : framing error and overrun error
flags; data in the receiver and transm itter buffers; start and data bit detectors; and end-of-transm ission (break) signals
from external equipment. It also issues break signals to external equipment.

Data Interface

The TMS 5501 moves data between the CPU and external devices through its internal data bus, input port, and output
port. When data is present on the bus that is to be sent to an external device, a Load Output Port (LOP) command from
the CPU puts the data on the XO p ins of the TMS 5501 by latching it in the output port. The data remains in the port
until another LOP command is received. When the CPU requires data that is present on the External I nput (X I) lines, it
issues a command that gates the data onto the internal data bus of the TMS 5501 and conSequently onto the CPU 's
data bus at the correct t ime during the CPU cycles.

Interval Timers

To start a countdown by any of the five interval timers, the program selects the particu lar timer by an address to the
TMS 5501 and loads the requ ired interval into the timer via the data bus. Loading the timer activates it and it counts
down in increments of 64 microseconds. The 8-bit counters provide intervals that vary in duration from 64 to 1 6,3�0
microseconds. Much longer intervals can be generated by cascading the timers through software. When a timer reaches
zero, it generates an interrupt that typically will be used to point to a subroutine that performs a serv ici ng function
such as pol l ing a peripheral or scanning a keyboard. Loading an i nterval value of zero causes an i mmediate interrupt. A

new value loaded whi le the interval timer is counting overrides the previous value and the interval timer starts counting
down the new i nterval . Wh�n an i nterval timer reaches zero it remains inactive until a new interval is loaded.

'

Servicing I nterrupts

The TMS 5501 provides a TMS 8080 system with several interrupt control functions by receiving external interrupt
signals, generating interrupt signals, masking out undersired interrupts, establ ishing the priority of interrupts, and
generating RST instructions for the TMS 8080. An external interrupt is received on pin 22, SENS. An additional
external interrupt can be received on pin 32, X 1 7, if selected by a discrete command from the TMS 8080 (See
F igure 4) . The TMS 5501 generates an interrupt when any of the five interval timers cou nt to zero. I nterrupts are also
generated when the receiver buffer is loaded and when the transmitter buffer is empty.

When an i nterrupt signal is received by the interrupt register from a particu lar source, a corresponding bit is set and
gated to the mask register. A pattern will have previously been set in the mask register by a load-mask-register command
from the TMS 8080. This pattern determ ines which i nterrupts wil l pass through to the priority logic. The priority logic
al lows an interrupt to generate an RST instruction to the TMS 8080 only if there is no higher prio rity interrupt that
has not been accepted by the TMS 8080. The TMS 5501 prioritizes interrupts in the order shown below:

1 st I nterval Timer #1
2nd I nterval Timer #2
3rd External Sensor
4th I nterval Timer #3
5th Receiver Buffer Loaded
6th Transmitter Buffer Emptied
7th I nterval Timer #4
8th I n terval Timer #5 or an External I nput (X I 7)

The highest priority i nterrupt passes through to the interrupt address logic, which generates the RST instruction to be
read by the TMS 8080. See Table 3 for relationship of interrupt sources to RST instructions and F igures 6 and 8 for
timing QJiationships.

The TMS 5501 provides two methods of servicing interrupts; an interrupt-driven system or a polled-interrupt system. I n
a n interrupt-driven system, the I NT signal o f the T M S 5501 is tied t o the I NT input o f the TMS 8080. The sequence of
events wi ll be: (1) The TMS 5501 receives (or generates) an interrupt signal and readies the appropriate RST
instruction. (2) The TMS 5501 I NT output, tied to the TMS 8080 I NT input, goes high signaling the TMS 8080 that an
interrupt has occured. (3) If the TMS 8080 is enabled to accept interrupts, it sets the I NTA (interrupt acknowledge)
status bit high at SY NC time of the next machine cycle. (4) If the TMS 5501 has previously received an interrupt­
acknowledge-enable command from the CPU (see Bit 3, Paragraph 2.2.5) . the RST i nstruction is transferred to the data
bus.

In a polled-interrupt system , I NT is not used and the sequence of events wil l be: (1) The TMS 550 1 receives (or
generates) an interrupt and readies the RST instruction. (2) The TMS 5501 interrupt-pending status bit (see Bit 5,
Paragraph 2 .2.4) is set high (the interrupt-pending status bit and the I NT output go high simultaneously) . (3) At the
prescribed time, the TMS 8080 polls the TMS 5501 to see if an interrupt has occurred by issuing a read­
TMS 5501 -status command and reading the interrupt-pendi ng bit. (4) If the bit is h igh, the TMS 8080 wil l then issue a
read-interrupt-address command, which causes the TMS 5501 to transfer the RST instruction to the data bus as data for
the instruction being executed by the TMS 8080.

1 .3 APPLICATI ONS

Communications Terminals

The functions of the TMS 550 1 make it particularly useful in TMS 8080-based communications terminals and generally
applicable in systems requiring periodic or random servicing of interrupts, generation of control signals to external
devices, buffering of data, and transmission and reception of asynchronous serial data. As an example, a system
configuration such as shown in F igure 2 can function as the controller for a terminal that governs employee entrance
into a plant or security areas within a plant. Each terminal is identified by a central computer through 10 switches. The
central system supplies each terminal's R AM with up to 1 6 employee access categories applicable to that term inal.
These categories are compared with an employee's badge character when he inserts his badge into the badge sensor. If a

match is not foun d, a reject l ight wi l l be activated. If a match is found, the term inal wi l l transmit the employee's badge

number and access category to the central system, and a door un lock solenoid wi l l be activated for 4 seconds. The

central computer then may take the transmitted information and record it a long with time and date of access.

The TMS 4700 is a 1 024 x 8 ROM that contains the system program, and the TMS 4036 is a 64 x 8 RAM that serves as

the stack for the TMS 8080 and storage for the access category i nformation. TTL circu its control ch ip-enable information

carried by the address bus. Signal s from the CPU gate the address bits from the R OM , the RAM, or the TMS 550 1 onto

the data bus at the correct t ime in the CPU cycle. The clock generator consists of four TTL ci rcuits a long with a crysta l ,

nee qed to mai ntain accurate ser ia l data assembly and disassembly with the central computer .

The TMS 5501 handles the asynchronous serial communication between the TMS 8080 and the central system and

gates data from the badge reader onto the data bus. I t also gates control and status data from the TMS 8080 to the door

lock and badge reader and controls the t ime that the door lock remains open . The TMS 5501 signals the TMS 8080

when the badge reader or the commun ication l i nes need service. The functions that the TMS 5501 is to perform are

selected by an address from the TMS 8080 with the highest order address l ine tied to the TMS 5501 chip enable input

and the four lowest order l i nes t ied to the address inputs.

2. OPE RATIONAL AND FUNCTIONAL DESC R IPTI ON

Th is detai led description of the TMS 550 1 consists of:

I N TE R F ACE SI G N A LS - a definition of each of the circuit's external connections

COMMAN DS - the address requ ired to select each of the TMS 550 1 commands and a description of the response to

the command.

2.1 I NT E R FAC E SIGNALS

The TMS 5501 communicates with the TMS 8080 via four address l i nes: a chip enable l i ne, an e ight-bit bidirectional

data bus, an interrupt l i ne , and a sync l ine . It commun icates with system components other than the CPU via eight

external inputs, e ight external outputs, a serial receiver input, a serial transm itter output, and an external sensor i nput.

Table 1 defines the TMS 550 1 pin assignments and describes the function of each p i n .

SIGNATU R E P I N

CE 1 8

A3 1 7

A2 1 6
A1 1 5
AO 1 4

SY NC 1 9

5

TAB LE 1
TMS 5501 PIN ASSIGNMENTS AND FUNCTIONS

DESC R I PTION
I NPUTS

Ch ip enable-When CE is low, · the TMS 5501 address decoding is inhi bited , which prevents

execution of any of the TMS 5501 commands.

Address bus-A3 through AO are the l ines that are addressed by the TMS 8080 to select a part icu lar

TMS 5501 function.

Synchron iz ing signa l-The SYNC signal is issued by the TMS 8080 and i ndicates the begi nn ing of a

mach ine cycle and avai l abil ity of mach ine status_ When the SYNC signal is active (h igh) . the

TMS 5501 wi l l monitor the data bus bits DO (interrupt acknowledge) and D 1 (WO , data output

funct ion) .

Receiver ser ia l data input l i ne- RCV must be held in the i nactive (h igh) state when not rece iv i ng

data. A transition from h igh to l ow wi l l activate the receive c ircu itry .

SIG NATU RE

X I O
XI 1
X l 2
X l 3
X l 4
X l 5
Xl 6
X l 7

SENS

xo o
xo 1
X0 2
X0 3
X0 4
X0 5
X0 6
xo 7

XMT

DO
D 1

PIN

39
38
37
36
35
34
33
32

22

24
25
26
27
28
29
30
3 1

40

1 3
1 2

D2 1 1
D3 1 0
D4 9
D5 8
D6 7
D7

INT

Vss
Vas
Vee
VD D

4>1
4>2

6

23

4

2
3

20
21

TABL E 1 (continued)

TMS 5501 PI N ASSIGNMENTS AND FUNCTIONS

DESCRIPTION

I NPUTS

External inputs-These eight external inputs are gated to the data bus when the read-external-inputs
function is addressed. External input n is gated to data bus bit n without conversion .

External interrupt sensing - A transition from low to high at SENS sets a bit in the interrupt
register, which, if enabled, generates an interrupt to the TMS 8080.

OUTPUTS

External outputs-These eight external outputs are driven by the complement of the output
register; i .e., if output register bit n is loaded with a h igh (low) from data bus bit n by a load­
output register command, the external output n will be a low (high) . The external outputs change
only when a load-output-register function is addressed.

Transm itter serial data output l ine-This l ine remains high when the TMS 5501 is not transmitti ng.

DATA BUS I NPUT/OUTPUT

Data bus - Data transfers between the TMS 550 1 and the TMS 8080 are made via the 8-bit
bidirectional data bus . DO is the LSB. 07 is the MSB.

I nterrupt-When active (high), the I NT output indicates that at least one of the interrupt conditions
has occurred and that its corresponding mask-register bit is set.

Ground reference
Supply voltage (-5 V nom inal)
Supply voltage (5 V nominal)
Supply voltage (1 2 V nominal)
Phase 1 clock
Phase 2 clock

POWER AND CLOCKS ·

2 . 2 TMS 5 5 0 1 COMMANDS

The TMS 5 5 0 1 operates as input/output device for the TMS 8080 . Func-

tions are init iated via the TMS 8080 address bus and the TMS 5 5 0 1

addre s s inputs . Addre ss decoding to determine the command function

being i s sued i s defined in Table 2 .

TABLE 2

COMMAND ADDRESS DECODING

When Chip Enable Is High

#2 #1

5501 5 5 0 1

PORT PORT

NO . NO . A3 A2 Al AO COMMAND FUNCTION PARAGRAPH

1 6 0 L L L L Read receiver buffer RBn Dn 2 . 2 . 1

1 7 1 L L L H Read external inputs XIn on 2 . 2 . 2

1 8 2 L L H L Read interrupt address RST ..,..Dn 2 . 2 . 3

19 3 L L H H Read TMS 5 5 0 1 status (Status)..,.Dn 2 . 2 . 4

20 4 L H L L I s sue discrete commands See Fig . 4 2 . 2 . 5

21 5 L H L H Load rate regi ster See Fig . 4 2 . 2 . 6

2 2 6 L H H L Load transmitter buffer Dn,..TBn 2 . 2 . 7 *

2 3 7 L H H H Load Output port on xon 2 . 2 . 8

24 8 H L L L Load mask register Dn,.MRn 2 . 2 . 9

2 5 9 H L L H Load interval timer 1 Dn�imer 1 2 . 2 . 10

26 10 H L H L Load interval timer 2 Dn�imer 2 2 . 2 . 10

2 7 1 1 H L H H Load interval timer 3 Dn �imer 3 2 . 2 . 10

28 1 2 H H L L Load interval timer 4 Dn o+ll'imer 4 2 . 2 . 1 0

29 1 3 H H L H Load interval timer 5 Dn �imer 5 2 . 2 . 1 0

30 1 4 H H H L No function

31 1 5 H H H H No function

* Important

0 1

H H

. H H

H H

H H

H H

H H

H H

H H

RBn Receiver buffer bit n

Dn Data bus I/O terminal n

Xln External input terminal n

RST 11 (1A
5

) (1A
4

) (1A
3

) 1 1 1 (see Table 3)

TBn Transmit buffer bit n

XOn Output register bit n

MRn Mask register bit n

TABLE 3

RST INSTRUCTIONS

DATA BUS BIT INTERRUPT CAUSED BY TMS 5 5 0 1

2 3 4 5 6 7

H L L L H H Interval Timer 1 Power Up

H H L L H H I nterval Timer 2 User Timer

H L H L H H External Sensor Real Time Clock

H H H L H H Interval Timer 3 Keyboard

H L L H H H Rece iver Buffer Rx RS - 2 3 2

H H L H H H Transmitter Buffer 'l'x RS- 2 3 2

H L H H H H Interval Timer 4 Bell Timer

H H H H H H Not Availab l e CRT Executive Loop

The fol lowing paragraphs define the func.ions of the TMS 550 1 commands.

2.2. 1 Read receiver buffer
Addressing the read-receiver-buffer function causes the receiver buffer contents to be transferred to the TMS 8080 and
clears the receiver-buffer-loaded flag.

2.2.2 Read external input lines
Addressing the read-external-i nputs function transfers the states of the eight external input l ines to the TMS 8080.

2.2.3 Read interrupt address
Addressing the read interrupt address function transfers the current h ighest priority interrupt address onto the data bus
as read data. After the read operation is completed, the corresponding bit in the interrupt register is reset .

I f the read-interrupt-address function is addressed when there is no interrupt pending, a false interrupt address wil l be
read. TMS 550 1 status function should be addressed in order to determine whether or not an interrupt condition i s
pending.

2.2.4 Read TMS 5�1 status ·

Addressing the read-TMS 5501 -status. function gates the various status conditions of the TMS 5501 onto the data bus.
The status conditions, available as indicated in F igure 3, are described in the following paragraphs.

B IT: 7 6 5 4 3 2 1 0
START F U L L I NT RPT XM IT RCV SE R I A L OVE R R U N F R AME

B I T B I T PENDING BUF FER BUFFER RCVD E R RO R E R ROR
D ETECT D ETECT EMPTY LOADED

FIGURE 3-DATA BUS ASSIGNMENTS FOR TMS 5501 STATUS

Bit 0, framing error
A h igh in bit 0 indicates that a framing error was detected on the last character received (either one or both stop bits
were in error) . The framing error flag is updated at the end of each character. B it 0 of the TMS 5501 status wi l l remain
high until the next val id character is received.

Bit 1 , overrun error
A high in bit 1 indicates that a new character was loaded into the receiver buffer before a previous character was read
out. The overrun error flag is cleared each time the read-I /O-status function is addressed or a reset command is issued.

Bit 2, serial received data
Bit 2 monitors the receiver serial data input line. This l ine is prov ided as a status input for use in detecting a break and
for test purposes. Bit 2 is normally h igh when no data is being received.

Bit 3, receiver buffer loaded
A h igh in bit 3 indiciates that the receiver buffer is loaded with a new character. The receiver-buffer-loaded flag remains
high until the read-receiver-buffer function is addressed (at which time the flag is cleared) . The reset function also clears
this flag.

Bit 5, interrupt pending

A high in bit 5 indicates' that one or more of the interrupt conditions has occured and the corresponding interrupt is
enabled. This bit is the status of the i nterrupt signal I NT.

Bit 6, full bit detected

A h igh in bit 6 indicates that the f irst data bit of a receive-data character has been detected. Th is bit rem ains h igh until
the entire character has been received or u nti l a reset is issued and is provided for test purposes.

Bit 7, start bit detected
A h igh in bit 7 indicates that the start bit of an incoming data character has been detected. Th is bit remains h igh unti l
the entire character has been received or until a reset i s issued and is provided for test purposes.

2.2.5 I ssue discrete commands

Addressing the d iscrete command function causes the TMS 550 1 to interpret the data bus information according to the
following descriptions. See F·igure 4 for the discrete command format. B its 1 through 5 are latched unti l a different
discrete command is received.

NORMALLY LOW

B IT : 7 6 5 4 3 2

NOT NOT TEST TEST
I NT.

I NT. 7
USED USED BIT BIT

ACK.
SE LECT

ENABLE

H : Enables i nterrupt acknowledge J
L : I nh i bits interrupt acknowledge

H : Selects XI 7 -
L . Selects mterval t1mer 5 -

FIGURE 4-DISC RETE COMMAND FORMAT

Bit 0, reset

A h igh in bit 0 wi l l cause the fol l owing:

1

B R EA K

0

R ESET

[H :
. L :

Reset
No action

� H : L Sets X M
'-- .

T output low
L . H Sets XMT output h igh

1) The receiver buffer and register are cleared to the search mode including the receiver-buffer-loaded flag, the
start-bit-detected flag, the ful l -bit-detected flag, and th11 overrun-error flag. The rec,eiver buffer is not cleared and
wi l l contain the last character received.

2) The transmitter data output is set high (mark ing) . The transm itter-buffer-empty flag is set high i ndicat ing that the
transmitter buffer is ready to accept a character from th� TMS 8080.

3) The interrupt register is cleared except for the bit corr�sponding to the transmitter buffer interrupt, which is set
h igh.

4) The i nterval timers are inhibited.

A low in bit 0 causes no action. The reset function has no affect on the output port, the external inputs, interrupt
acknowledge enable, the mask register, the rate register, the transmitter register, or the transmitter buffer.

Bit 1 , break

A low in bit 1 causes the transmitter data output to be reset low (spaci ng) .

I f b i t 0 and b i t 1 are both h igh , the reset function w i l l override.

Bit 2, interrupt 7 select

I nterrupt 1 may be generated e ither by a l ow to h igh transition of external input 7 or by interval timer 5.

A high in bit 2 selects the i nterrupt 7 source to be the transition of external input 7. A low in bit 2 selects the

interrupt 7 sou rce to be interval t imer 5.

Bit 3, interrupt acknowledge enable

The TMS 5501 decodes data bus (CPU status) bit 0 at SYNC of each m achine cycle to determ ine if an interrupt

acknowledge is being i ssued.

A high in bit 3 enables the TMS 5501 to accept the i nterrupt acknowledge decode. A l ow in bit 3 causes the TMS 550 1
to ignore the i nterrupt acknowledge decode.

B i t 4 and bit 5 are used only during testing of the TMS 550 1 . For correct system operation both bits must be kept low.

B i t 6 and bit 7 are not used and can assume any value.

2.2.6 Load rate register

Addressing the load-rate-register function causes the TMS 5501 to load the rate register from the data bus and interpret

the data bits (See F igure 5) as fol lows.

BIT: 7 6 5 4 3 2 1 0
STOP 9600 4800 2400 1 200 300 1 50 1 1 0
B I T(s) baud baud baud baud baud baud baud

r-H : One stop bit
..... , . L. Two stop b1ts

F I G U R E 5-DATA BUS ASSIGNMENTS FOR R AT E COMMAN DS.

Bits 0 through 6, rate select

The rate select bits (b its 0 through 6) are mutually exclusive, i .e. , only one bit may be h igh . A h igh in bits 0 through 6
wi l l select the baud rate for both the transm itter and receiver circu itry as defined bel ow and in F igure 5 :

Bit 0 1 1 0 baud

Bit 1 1 50 baud

Bit 2 300 baud

Bit 3 1 200 baud

B i t 4 2400 baud

Bit 5 4800 baud

Bit 6 9600 baud

If more than one bit is high, the h ighest rate indicated wi l l result. If bits 0 through 6 are al l low, both the receiver a nd

the transmitter circuitry wi l l be inhibited.

CRT 5027
APPENDIX G . 3

JLPC FAMILY

CRT Video Timer-Controller
VTAC

FEATURES

D Fully Program mable Display Format
Characters per data row (1 -200)
Data rows per frame (1 -64)
Raster scans per data row (1 -1 6)

D Prog ram mable Monitor Sync Format
Raster Scans/ Frame (256-1 023)
" Front Porch"
Sync Width
" Back Porch"
I nterlace/ Non-I nterlace
Vertical B lanking

D Direct Outputs to C RT Monitor
Horizontal Sync
Vertical Sync
Composite Sync
Blanking
Cursor coi ncidence

D Programmed via:
Processor data bus
External PROM
Mask Option ROM

D Standard or Non-Standard C RT Monitor Compatible
D Refresh Rate: 60Hz, 50Hz, . . .
D Scrol l ing

Sing l e Line
M u lti-Li ne

D Cursor Posit ion Reg isters
D Character Format : 5x7, 7x9, . . .
D Programmable Vertical Data Posit ioni ng
D Graph ics Compatib le

General Description

PIN CONFIGURATION

A2. A1

All
Hll

A3 H1
R2 H2

GND H3
A1 H4
All H5

OS H6
CSYN H7/DR5
VSYN DR4

DCC DA3
Voo DA2
Vee DR1

HSYN DRII
CRV 08111

8L 081
087 082
086 083
085 084

D Split-Screen Appl ications
Horizo ntal
Vertical
Program mable Wi pes

D External Video Sync-Lock
D TTL Compatib i l ity
0 BUS Oriented
0 High Speed O peration
0 COPLAMOS® N-Channel S i l icon

Gate Technology

The CRT Video Timer-Controller Chip (VTAC) is a user programmable 40-pin COPLAMOS® n channel MOS/LSI device
containing the logic functions required to generate all the timing signals for the presentation and formatting of interlaced and
non-interlaced video data on a standard or non-standard CRT monitor.

With the exception of the dot counter, which may be clocked at a video frequency above 25 MHz and therefore not
recommended for MOS implementation, all frame formatting, such as horizontal, vertical, and composite sync, characters
per data row, data rows per frame, and raster scans per data row and per frame are totally user programmable. The data row
counter has been designed to facilitate scrolling.

Programming is effected by loading seven 8 bit control registers directly off an 8 bit bidirectional data bus. Four register
address lines and a chip select line provide complete microprocessor compatibil ity for program controlled set up. The device
can be "self loaded" via an external PROM tied on the data bus as described in the OPERATION section. Formatting can also
be programmed by a single mask option.

In addition to the seven control registers two additional registers are provided to store the cursor character and data
row addresses for generation of the cursor video signal. The contents of these two registers can also be read out onto the
bus for update by the program.

Bit 7, stop bits

Bit 7 determines whether one or two stop bits are to be used by both the transmitter and receiver circuitry. A h igh i n

bi t 7 selects o n e stop bit. A low i n b i t 7 selects two stop bits.

2.2.7 Load transmitter buffer

Addressing the load-transmitter-buffer function transfers the state of the data bus into the transmitter buffer.

2.2.8 Load output port

Addressing the load-output-port function transfers the state of the data bus into the output port. The data is l atched

and remains on XO 0 through XO 7 as the complement of the data bus u nt i l new data is loaded.

2.2.9 Load mask register

Addressing the load-mask-register function l oads the contents of the data bus into the mask register. A h igh in data bus

bit n enables i nterrupt n. A low inhibits the corresponding interrupt.

2.2.10 Load timer n

Addressing the load-t i mer-n function loads the contents of the data bus into the appropriate interval timer. Time

intervals of from 64 IJ.S (data bus = LLLLLLLH) to 16,320 IJ.S (data bus H H H H H H H H) are counted in 64-IJ.s, steps.

When the count of interval timer n reaches 0, the bit in the interrupt register that corresponds to timer n is set and

an i nterrupt is generated. Loadihg al l lows causes an interrupt immediately .

3. TMS 5501 E L ECT RI CAL AND M ECHAN ICAL SPECI FICATIONS

3.1 ABSOLUTE MAX I MUM RAT I NGS OVE R OPE RATI NG F R E E·A I R TEMPE R ATU R E R ANG E
(UNLESS OTH ERWISE NOTE D) *

Supply voltage, V CC (see Note 1)

Supply voltage, V o o (see Note 1

Supply vol tage, Vss (see Note 1)
Al l i nput and output voltages (see Note 1)

Continuous power dissipation

Operating free-air temperature range

Storage temperature range

-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V
. . . . 1 . 1 w

0°C to 70°C

-65°C to 1 50°C

" Stresses beyond those l i sted u n der " Absolute Maximum Rati ngs" may cause permanent damage to the device. T h i s is a stress rating o nly
and fu nctional operation of the dev ice at these or any other conditions beyond those ind icated in the "Recommended Operat ing
Condit io ns" section of this spec ification is not impl ied. E xposure to abso lute-max i mum-rated conditions for extended periods may affect
device rel ia b i l i t y .

N O T E 1 : Under abso l u te ma x i mum ratings voltage values are w i t h respect to t h e normally moat negative s u p p l y voltage, V e e (substrate) .
Throughout the rema1n der of this data sheet, voltage valuea are with reapect to v55 u nless otherwise noted.

3.2 R ECOMMENDED OPERAT I N G COND ITIONS

MIN NOM MAX UNIT

Supply voltage, Vee -4.75 -5 -5.25 v
Supply voltage, Vee 4.75 5 5.25 v
Supply voltage, Voo 1 1 .4 1 2 1 2.6 v
Supply voltage, Vss 0 v
High-level input voltage, V 1H (al l inputs except clocks) 3.3 Vee+1 v
High-level clock input voltage, V IH (dl) Voo-1 Voo+1 v
Low-level input voltage, V I L (all inputs except clocks) (see Note 2) -1 0.8 v
Low-level clock input voltage, V I L (¢>) (see Note 2) -1 0.6 v
Operating free-air temperature, T A 0 70 o c

N O T E 2 : The algebraic convention where the most negative limit is dHigneted es minimum I a used in thia apeclficetlc;;n for logic voltage levels o n l y .

MAXIMUM G UARANTEED RATINGS*

Operating Temperature Range . ooc to + 7ooc
Storage Temperature Range . - 55oc to + 1 50°C
Lead Temperature (soldering, 1 0 sec.) . + 325°C
Positive Voltage on any Pin, with respect to ground . + 1 8.0V
Negative Voltage on any Pin, with respect to ground . - 0.3V
* Stresses above those listed may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or at any other condition above those i ndicated in the operational
sections of this specification is not implied.

NOTE: When poweri n g th is device from laboratory or system power suppl i es, it is i mportant that
the Absolute Maximum Ratings n ot be exceeded or device fai l u re can result . Some power suppl ies
exhibit voltage spi kes or " g l itches" o n their outputs when the AC power is switched o n and off.
In addition, voltage transients on the AC power l ine may appear on the DC output. For example, the
bench power supply programmed to del iver + 12 volts may have larg e voltage transients when the
AC power i s switched o n and off. If th is possibi l ity exists i t is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS (T A=0°C to 70°C, Vee= + 5V ± 5%, Voo= + 1 2V ± 5%, unless otherwise noted)

Parameter

D.C. CHARACTERISTICS
I N PUT VOLTAGE LEVELS

Low Level, V IL
High Level, V1H

OUTPUT VOLTAGE LEVELS
Low Level-VaL for R!l-3
L�w Levei-VoL all others
High Levei-VoH for Rlil-3
High Levei-VoH all others

INPUT CURRENT
Low Level, I 1L
High Level, l iH

INPUT CAPACITANCE
Data Bus, C1N
Clock, C1N
All other, C1N

DATA BUS LEAKAGE in IN PUT MODE
los
los

POWER SUPPLY CURRENT
Icc
l oo

A.C. CHARACTERISTICS
DOT COUNTER CARRY

frequency
PWH
PWL
tr, It

DATA STROBE
PWBS

ADDRESS, CHIP SELECT
Set-up time
Hold time

DATA BUS-LOADING
Set-up time
Hold time

DATA BUS-READING
TDEL2

OUTPUTS : H{l-7, HS, VS, BL, CRV,
CS-ToEL1

OUTPUTS: R!l·3, DR0-5
TDEL3

Min.

Vcc - 1 .5

2.4
2.4

0.2
35
1 90

Typ.

1 0
25
1 0

80
40

4 .0

1 0

1 50

1 00
50

1 00
75

1 00

1 00

1 .0

Restrictions

Max.

0.8
Vee

0 .4
0 . 4

Un it

v
v

v
v

pf
pf
pf

rna
rna

M Hz
ns
ns
ns

ns

ns
ns

ns
ns

ns

ns

IJ.S

Comments

l oL = 3. 2ma
loL = 1 . 6ma
l oH = 80�J.a
l oH = 40�J.a

TA = 25°C

Figure 1
Figure 1
Figure 1
Figure 1

Figure 2

Figure 2
Figure 2

Figure 2
Figure 2

Figure 2, CL= 50pf

Figure 1 , CL=20pf

Figure 3, CL= 20pf

1 . Only one pin is available for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore
loaded into the chip by presenting one set of addresses and outputed by presenting a different set of addresses. Therefore
the standard WRITE and R EAD control signals from most microprocessors must be "NORed" externally to present a si119le
strobe (OS) signal to the device.
2. An even number of scan l ines per character row must be programmed in interlace mode. This is again due to pin count
limitations which require that the least significant bit of the scan counter serve as the odd/even field indicator.
3. In interlaced mode the total number of character slots assigned to the horizontal scan must be even to i nsure that vertical
sync occurs precisely between horizontal sync pulses.

2

Operation
The design philosophy employed was to allow the device t? interface effective!� with either a microprocessor based or

hardwire logic system. The device is programmed by the use� tn one of two ways; v1a the process�r data bus as part of the
system initialization routine, or during power up via a PROM t

_
1ed on the data bus and ad

_
dres

_
sed �1rectly by the Row Select

outputs of the chip. (See figure 4). Seven 8 bit words are requ1red to fully pr�gram the ch1p. �1t assignments for these words
are shown in Table 1 . The information contained in these seven words consists of the followtng:

Horizontal Formatting:
Characters/Data Row

Horizontal Sync Delay

Horizontal Sync Width

Horizontal Line Count

Skew Bits

Vertical Formatting:
Interlaced/Non-interlaced

Scans/Frame

Vertical Data Start

Data Rows/Frame

Last Data Row

Scans/Data Row

Device Initialization:

A 3 bit code providing 8 mask programmable character lengths from 20 to 1 32.
The standard device will be masked for the following character lengths; 20, 32,
40, 64, 72, 80, 96, and 1 32.

3 bits assigned providing up to 8 character times for generation of "front porch".

4 bits assigned providing up to 16 character times for generation of horizontal
sync width.

8 bits assigned providing up to 256 character times for total horizontal formatting.

A 2 bit code provid ing from a 0 to 2 character skew (delay) between the
horizontal address counter and the horizontal blank and sync signals to allow for
retiming of video data prior to generation of composite video signal. The Cursor
Video signal is also skewed as a function of this code.

This bit provides for data presentation with odd/even field formatting for inter­
laced systems. It modifies the vertical timing counters as described below.
A logic 1 establishes the interlace mode.

8 bits assigned, defined according to the following equations: Let X = value of 8
assigned bits.
1) in interlaced mode-scans/frame = 2X + 5 1 3. Therefore for 525 scans,
program X = 6 (000001 1 0) . Vertical sync will occur precisely every 262.5 scans,
thereby producing two interlaced fields.
Range = 513 to 1 023 scans/frame, odd counts only.
2) in non-interlaced mode-scans/frame = 2X + 256. Therefore for 262 scans,
program X = 3 (0000001 1).
Range = 256 to 766 scans/frame, even counts only.

In either mode, vertical sync width is fixed at three horizontal scans (= 3H).

8 b its defining the number of raster scans from the leading edge of vertica l
sync unt i l the start of d isplay data. At th is raster scan the data row counter is
set to the data row address at tre top of the page.

6 bits assigned providing up to 64 data rows per frame.

6 bits to allow up or down scrolling via a preload defining the count of the last
displayed data row.

4 bits assigned providing up to 1 6 scan lines per data row.

Additional Features

Under microprocessor control-The device can be reset under system or program control by presenting a 1 01 16 address
on A3-fJ. The device will remain reset at the top of the even field page until a start command is executed by presenting a 1 1 1 �
address on A3-�.

Via "Self Loading"-ln a non-processor environment, the self loading seguence is effected by presenting and holding the
1 1 1 1 address on A3-f6, and is initiated by the receipt of the strobe pulse (OS). The 1 1 1 1 address should be maintained long
enough to insure that all seven registers have been loaded (in most applications under one millisecond). The timing
sequence will begin one line scan after the 1 1 1 1 address is removed . In processor based systems, self loading is initiated by
presenting the �1 1 1 address to the device. Self loading is terminated by presenting the start command to the device which
also initiates the timing chain.

Scrolling-In addition to the Register 6 storage of the last displayed data row a "scroll" command (address 11 11 1)
presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications.

3

Pin No.

25-18

3

39 , 40,1 , 2

9

1 2

38-32

7, 5, 4

31

8

26-30

1 7
1 5
1 1
1 0

1 6

1 4
1 3

Symbol

DB¢-7

cs
A¢-3

OS

DCC

H¢-6

R 1 -3

H7/DR5

R�

D R�-4

BL
HSYN
VSYN
CSYN

CRV
Vee
VDD

Description of Pin Functions

Input/
Name Output Function

Data Bus 1/0 Data bus. Input bus for control words from microprocessor or
PROM. Bidirectional bus for cursor address.

Chip Select Signals chip that it is being addressed
Register Register address bits for selecting one of seven control
Address registers or either of the cursor address registers
Data Strobe Strobes DB¢-7 into the appropriate register or outputs the

cursor character address or cursor l ine address onto the data bus
DOT Counter Carry from off chip dot counter establishing basic character
Carry c lock rate. Character c lock.
Character 0 Character counter outputs.
Counter Outputs

Scan Counter 0 Three most significant bits of the Scan Counter; row select
Outputs inputs to character generator.
H7/DR5 0 Pin definition is user programmable. Output is MSB of

Character Counter if horizontal l i ne count (REG . 0) is �1 28;
otherwise output is MSB of Data Row Counter.

Scan Counter LSB 0 Least significant bit of the scan counter. In interlaced mode this
(Odd/Even Field) bit defines the odd or even field. In this way, odd scan lines of

the character font are selected during the odd field and even
scans during the even field.

Data Row 0 Data Row counter outputs.
Counter Outputs
Blank 0 Defines non active portion of horizontal and vertical scans.
Horizontal Sync 0 Initiates horizontal retrace.
Vertical Sync 0 Initiates vertical retrace.
Composite Sync 0 Active in non-interlaced mode only. Provides a true RS-1 70

composite sync waveform.

Cursor Video 0 Defines cursor location in data field.
Power Supply PS + 5 volt Power Supply
Power Supply PS + 12 volt Power Supply

Timing Diagrams

HORIZONTAL TIMING
START OF LINE N START OF LINE N + 1 _n '07717/I/Z/ZZZZZZZZZZZZO!d n)/OZ/7

CHARACTERS PER DATA LINE · •
HORIZONTAL SYNC DELAY _j

(FRONT PORCH)
.

HORIZONTAL SYNC WIDTH

t ACTIVE VIUEO = j_ J _I

HORIZONTAL LINE COUNT H -----��
VERTICAL TIMING

START OF FRAME M O R ODD FIELD START OF FRAME M o 1 OR EVEN FIELD

1--------- SCAN L INES PER FRAME ----------;
_h'------JLV-'--'O,..LI__.�._I-'-Z'-LOTZ--'--'--'-Lll--'-1-'-Z'--LII_LI-'-ZLJ.ZZ-'--I-'-ZLJ.II__.�._I-L../._,/IZZ21-"--'-�n. .__--L-11777LL-L-

I.. _.f.. ACTIVE VIDEO - .I 1--.J
VERTICAL DATA___J DATA ROWS PER FRAME • L VERTICAL SYNC

START "3H

TABLE 1

BIT ASSIGNMENT CHART
HORIZONTAL LINE COUNT SKEW BITS DATA ROWS/FRAME

1 I � I REG 3 .___I *L--6 .l.--1 �--1-1 __._I __a___...l.--LI---1� I
LAST DISPLAYED DATA ROW

�gz����1i��A
E
�ri"D/

1
H SjNC WIDTH� DELAY SCAN LINEiS/FRAME CURSOR CHArACTER ADDRESS

REG 1 I 7 1 6 1 I ; I 2j@ I REG 4 ._I �_.l___.__.___._--'-___.___1....,�_.1 REG 7 L.:l 7:....J1 IL-...JL-...JL-1--l.--L--L.I �� I
SCANS/DATA ROW CHARACTERS/DATA ROW VERTICAL DATA START

REG 2 1 I � I i I ; I IT]} I REG 5 1.__� ..__I �l___.__l �__.!__,� I
4

REG s l L _..1.----l
l
_
;
_
cu

LI
R

-

s
o

.l.

R

_

R

..J

f
_

W

....J

A

L-

D

-

DR

J....I
E�

�

·
s
j

A3 A2 A1 A 'I
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1
1 0 1 0

1 0 1 1

1 1 0 0
1 1 0 1
1 1 1 0

1

Register Selects/Command Codes

Select/Command
Load Control Register �
Load Control Register 1
Load Control Register 2
Load Control Register 3
Load Control Register 4
Load Control Register 5
Load Control Register 6
Processor Self Load

Read Cursor Line Address
Read Cursor Character Address
Reset

Up Scroll

Load Cursor Character Address·
Load Cursor Line Address·
Start Timing Chain

Non-Processor Self Load

Description

See Table 1

Command from processor instructing CRT
5027 to enter Self Load Mode

Resets timing chain to� left of page. Reset
is latched on chip by and counters are
held until released by start command.
Increments address of first displayed data
row on page. ie; prior to receipt of scroll
command-:-top line = 0, bottom line = 23.
After receipt of Scroll Command-top line =
1 , bottom line = 0.

Receipt of this command after a Reset or
Processor Self Load command will release
the timing chain approximately one scan l ine
later. In applications requiring synchronous
operation of more than one CRT 5027 the
dot counter carry should be held low during
the OS for this command.
Device will begin self load via PROM when
OS goes low. The 1 1 1 1 command should be
maintained on A3-Cl long enough to guaran­
tee self load. (Scan counter should cycle
through at least once). Self load is automati­
cally terminated and timing chain initiated
when the all " 1 's" condition is removed, in­
dependent of OS. For synchronous opera­
tion of more than one CRT 5027, the Dot
Counter Carry should be held low when this
command is removed.

• NOTE : During Self-Load, the Cursor Character Address Register (REG 7) and the Cursor Row Address

' '

Register (REG 8) are enabled duri ng states 01 1 1 and 1 1111110 of the R3-R0 Scan Counter outputs respectively.
Therefore, Cursor data in the PROM should be stored at these addresses.

VoH
Composite Sync Timing Diagram

H SYN0l
n n n n fl_ VOL : I I I I I I I I . VoH i I

I

I
V SYNC i I I I I I I VoL i : I

I : I
H H . I I I I I I I VoH : I I I I

AC TIMING DIAGRAMS

FIGURE 1 VIDEO TIMING

DOT COUNTER I
CARRY � �--JJ

��------------------PW L ----------------------��------PW H------�

H9f-f
H SYNC, V SYNC, BLANK,
CURSOR VIDEO,
COMPOSITE SYNC

��-----ToEL 1 -------Ooi

DB�-7
READING OUT
OF DATA

FIGURE 2 LOAD/READ TIMING

FIGURE 3 SCAN AND DATA ROW COUNTER TIMING

H SYNC -------------J

RS-3
DR,III-5 ----------------+-----....J

Figure 4. SELF LOADING SCHEME FOR CRT 5027 SET-UP
LJ

t t t t t l
DB!J

A'l Ao A' A> CS OS
�

A A SMC
� � CRT 5027

VTAC
�

-(><J-- �
DB7 v � A

�""' Ro A• A2 A>

Hill -
32 >< 8 PROM HAo

HARRIS HM· 7602
OR EQUIVALENT HA•

SLOAO---<� cs HAo (from system·) HA.• - +s
ROW SELECTS

TO CHARACTER GENERATOR

SE
LR

DOT
C��

��T
ER

�1:.
.:2::.._------------------1

La -.
-- - -

-
-

-
·

H �

� ,.

SE
LR

0
SE

LR8

SE
LR

5

6
GN

O

B
L

O
C

K
 D

IA
G

R
A

M

""'

CRT 5027 Control Registers Programming Chart

Horizontal Line Count:

Characters/Data Row:

Total Characters/Line = N + 1 , N = O to 255 (DB0'= LSB)

DB2 DB1 DB0
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

20 Active Characters/Data Row
32
40
64
72
80
96
1 32

Horizontal Sync Delay:
Horizontal Sync Width:

= N , from 1 to 7 character times (DBfl= LSB) (N =O Disallowed)
= N , from 1 to 1 5 character times (DB3 = LSB) (N = O Disallowed)

Skew Bits

Scans/Frame

Vertical Data Start:

Data Rows/Frame:

Last Data Row:

Scans/Data Row:
Mode:

DB6
0
0
1
1

DB7
0
1
0
1

Sync/Blank Delay Cursor Delay
(Character Times)

0 0
1 0
2 1
2 2

8 bits assigned, defined according to the following
equations: Let X = value of 8 assigned bits. (DB�= LSB)

1) in interlaced mode-scans/frame = 2X + 5 1 3.
Therefore for 525 scans, program X = 6 (000001 1 0).
Vertical sync wil l occur precisely every 262.5 scans,
thereby producing two interlaced fields.
Range = 5 1 3 to 1 023 scans/frame, odd counts only.
2) in non-interlaced mode-scans/frame = 2X + 256.
Therefore for 262 scans, program X = 3 (0000001 1) .
Range = 256 to 766 scans/frame, even counts only.

In either mode, vertical sync width is fixed at three horizontal
scans (=3H) .

N = number of raster lines delay after leading edge of
vertical sync of vertical start position. (DB@'= LSB)

Number of data rows = N + 1 , N = 0 to 63 (DB¢= LSB)

N= Address of last displayed data row, N = O to 63, ie;
for 24 data rows, program N = 23. (DB0'= LSB)

= N + 1 , N=O to 1 5 (DB3= LSB)
DB7 = 1 establ ishes i nterlace

TABLE 1
BIT ASSIGNMENT CHART

HORIZONTAL LINE COUNT SKEW BITS DATA ROWS/FRAME LAST DISPLAYED DATA ROW•

i I � I REG 3 1 * I � I I � I
MODE: INTERLACED/ H SYNC WIDTH H SYNC DELAY Scans/Frame
NON INTERLACEO

REG 1 1 71 �I l
SCANS/DATA ROW

REG 2 1 . I� I i
I� I� I I I� I REG 4 1 �I

CHARACTERS/DATA ROW

I;IITJ!I REG s l �I
i I� I

VERTICAL DATA START
I

I� I I

REG s l...._.......___.l_�...._l _.__.__IL.......LI---'� I
CURSOR CHARACTER ADDRESS

REG 7 1 �I I

I� I
CURSOR ROWIADDRESS

REG al I ; I i I I� I
Circuit diagrams utilizing SMC products are included as a means of i l lustrating typical semiconductor applications; consequently,
complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked
and is believed to be entirely reliable. However, no responsibil ity is assumed for inaccuracies. Furthermore, such information
does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others.
SMC reserves the right to make changes at any time In order to improve design and to supply the best product possible.

SMC Microsystems Corporation 35 Marcus oulevard Haappauge, New York 1 1 787 (5 16) J-3100 TWX: 51 -

	2012_03_05_11_08_27
	2012_03_05_11_08_28
	2012_03_05_11_08_30
	2012_03_05_11_08_31
	2012_03_05_11_08_33
	2012_03_05_11_08_34
	2012_03_05_11_08_35
	2012_03_05_11_08_36
	2012_03_05_11_08_38
	2012_03_05_11_08_39
	2012_03_05_11_08_41
	2012_03_05_11_08_42
	2012_03_05_11_08_43
	2012_03_05_11_08_44
	2012_03_05_11_08_46
	2012_03_05_11_08_47
	2012_03_05_11_08_49
	2012_03_05_11_08_50
	2012_03_05_11_08_51
	2012_03_05_11_08_52
	2012_03_05_11_08_54
	2012_03_05_11_08_55
	2012_03_05_11_08_57
	2012_03_05_11_08_58
	2012_03_05_11_08_59
	2012_03_05_11_09_00
	2012_03_05_11_09_02
	2012_03_05_11_09_03
	2012_03_05_11_09_05
	2012_03_05_11_09_06
	2012_03_05_11_09_07
	2012_03_05_11_09_08
	2012_03_05_11_09_10
	2012_03_05_11_09_11
	2012_03_05_11_09_13
	2012_03_05_11_09_14
	2012_03_05_11_09_15
	2012_03_05_11_09_16
	2012_03_05_11_09_18
	2012_03_05_11_09_19
	2012_03_05_11_09_21
	2012_03_05_11_09_22
	2012_03_05_11_09_23
	2012_03_05_11_09_24
	2012_03_05_11_09_26
	2012_03_05_11_09_27
	2012_03_05_11_09_29
	2012_03_05_11_09_30
	2012_03_05_11_09_31
	2012_03_05_11_09_32
	2012_03_05_11_09_34
	2012_03_05_11_09_35
	2012_03_05_11_09_37
	2012_03_05_11_09_38
	2012_03_05_11_09_39
	2012_03_05_11_09_40
	2012_03_05_11_09_42
	2012_03_05_11_09_43
	2012_03_05_11_09_45
	2012_03_05_11_09_46
	2012_03_05_11_09_47
	2012_03_05_11_09_48
	2012_03_05_11_09_50
	2012_03_05_11_09_51
	2012_03_05_11_09_53
	2012_03_05_11_09_54
	2012_03_05_11_09_55
	2012_03_05_11_09_56
	2012_03_05_11_09_58
	2012_03_05_11_09_59
	2012_03_05_11_10_01
	2012_03_05_11_10_02
	2012_03_05_11_10_03
	2012_03_05_11_10_04
	2012_03_05_11_10_06
	2012_03_05_11_10_07
	2012_03_05_11_10_09
	2012_03_05_11_10_10
	2012_03_05_11_10_12
	2012_03_05_11_10_13
	2012_03_05_11_10_14
	2012_03_05_11_10_15
	2012_03_05_11_10_17
	2012_03_05_11_10_18
	2012_03_05_11_10_20
	2012_03_05_11_10_21
	2012_03_05_11_10_22
	2012_03_05_11_10_23
	2012_03_05_11_10_25
	2012_03_05_11_10_26
	2012_03_05_11_10_28
	2012_03_05_11_10_29
	2012_03_05_11_10_31
	2012_03_05_11_10_31_000
	2012_03_05_11_10_55
	2012_03_05_11_10_56
	2012_03_05_11_10_58
	2012_03_05_11_10_58_000
	2012_03_05_11_11_00
	2012_03_05_11_11_01
	2012_03_05_11_11_03
	2012_03_05_11_11_04
	2012_03_05_11_11_06
	2012_03_05_11_11_06_000
	2012_03_05_11_11_08
	2012_03_05_11_11_09
	2012_03_05_11_11_11
	2012_03_05_11_11_12
	2012_03_05_11_11_14
	2012_03_05_11_11_14_000
	2012_03_05_11_11_16
	2012_03_05_11_11_17
	2012_03_05_11_11_19
	2012_03_05_11_11_20
	2012_03_05_11_11_22
	2012_03_05_11_11_22_000
	2012_03_05_11_11_25
	2012_03_05_11_11_26
	2012_03_05_11_11_28
	2012_03_05_11_11_29
	2012_03_05_11_11_31
	2012_03_05_11_11_32
	2012_03_05_11_11_34
	2012_03_05_11_11_35
	2012_03_05_11_11_37
	2012_03_05_11_11_38
	2012_03_05_11_11_39
	2012_03_05_11_11_40
	2012_03_05_11_11_42
	2012_03_05_11_11_43
	2012_03_05_11_11_45
	2012_03_05_11_11_45_000
	2012_03_05_11_11_47
	2012_03_05_11_11_48
	2012_03_05_11_11_50
	2012_03_05_11_11_51
	2012_03_05_11_11_53
	2012_03_05_11_11_54
	2012_03_05_11_11_55
	2012_03_05_11_11_56
	2012_03_05_11_11_58
	2012_03_05_11_11_59
	2012_03_05_11_12_01
	2012_03_05_11_12_02
	2012_03_05_11_12_03
	2012_03_05_11_12_04
	2012_03_05_11_12_06
	2012_03_05_11_12_07
	2012_03_05_11_12_09
	2012_03_05_11_12_10
	2012_03_05_11_12_12
	2012_03_05_11_12_12_000

