BOW 1O INSTALL THE 16K ADD-ON RAM IN THE COMPUCOLCR II

1. Remove power from unit,
2. Remove keyboard cable from rear of unit.

3. Reamove three Phillips head screws across the top of rear cover and one
Hex head screw at the bottom of rear cover.

4. Remove rear cover and put to one side. Be careful of power supply
cable wire set.

5. Remove three cable sets from logic board.
6. Remove logic board. . ;

7. Check chip located at location UE2. 1If number on top of chip is
#100631 do not remove it. If the chip is #100639, remove it and
replace it with the supplied #100631. Note that the chip has a groove
on one end. Note on logic board the decal with the groove drawn on one
end directly under chip location. Match groove on board to groove on
chip. Be careful not to bend pins of the chip.

8. Locate two twelve pin connectors (J8) on logic board, one end numbered
1 through 12, other end numbered 13 through 24.

9. Locate Ram add-on. Notice number one through twelve on ram add-on
should go to one through twelve on logic board.

10. Re-install logic board in unit. Notice groove cut in front of logic
board. Place groove in position so that aligns to plastic bar in front
of cabinet. (If this is not correctly done unit will not fit snugly
to front of cabinet.) '

11. Re-install three cable sets. Eight pin-connector (J6) fits on eight
pin connector on logic board. Put cne six pin connector with red,
blue, white, yellow, orange wires on six pin connector (J5) next to
eight pin connector; put other six pin connector with green, blue,
red, black wires on next connector (J4).

12. Place unit face down on padded working surface and place back on rear
of unit, aligning plastic tabs on bottom of rear cover to matching
grooves in front cabinzt. Push back down on front cabinet so that it
fits snugly, careful to align tabs on logic board to small rectangular
holes in rear cove" Ke—-install three Phillips head screws in top of
rear of unit and He® .rew in bottom.

13. Place unit bact <iynt position, re-install keyboard cable, apply
power to unit,

14, Unit shoul initialize with 32049 bytes free, if the original logic
board was K.

IF YOU EXPFRIENCE ANY PROBLEMS WHILE INSTALLING THE ADD--ON RAM PLEASE
CALL OUR CUSTOMER SERVICE PERSONNEL AT 404-449-5961.

T = }[

ucﬂl
Uts Cs3CD! “G‘° Ucu
[¢ S

17
o]

cn.%'}:z [

*uGs

[

: UFs
4 e C23 " "2? o_. -
e i [j
; CR3 e o [
€223 cre ﬂ O+ .
C57 urs
*UGE .
UGS UFZ
: S L 3 I
6 s .
csst—= Rz2s cso
DL

s L3

c67
. '5338 <UF2
: d 8
“_"D Cs8
u’gU(‘SZ :JF‘
ST [
()(}29 Cc59
*UGt

O I 2 26

PH100962~4

®UE9 *up12 y ,
[- Pid [{4 c26
<Y mte!mnlsm:mstom.o .
cs4 12 1 - -
: [=] y6 (C) 1978
C30-C48
®yes 17 ’q
k) \S @‘* *uB11 — U
JUDI0L ¢ o XY
3 c7sl‘ g @ cas F
}D e °.Up9 . 3
Cse [g I g P Dcsa
SUEG JUDBY & o UBB [‘
g [F UAG
_ g C50 L 4y
«, «UDT 4 4 «UB? e A cos
CUES [B M to (
4 51
oUDG 4 4 A UAS
[. guas -
: . * uaa
5 4 N
*UES - '"Dﬁ *Xuss [. J
cs .) “Cs2
O . ._UD4 4 4 *ups J
c1 g |
Vs CO -3 | S —-;J
" : 15 28 Y9
S '[:) c9 13 .
ll8 (D [us Cuks
Raz O ce2 24
D3, ¢7 uct, up3.
oo 30 [0 00 3 ;
£ O : ‘ 'Ucz'm
R5 C4 .
uD2 ’ . .
: ‘us2 ' Ty
’] L Ju ° —™
n2s N] R4 Rz
nro L3 oy 21 C 10 _
yct C}. . 'CD T4, ug o1 — no
a2 ;u_q 5 [[=
S R11 £CR1 S onm
Ci2 K3
UCG! UDY R13 cestco
92 2 26 J3 o Rt L3 -

REDUCE 10 10.500 ¥ .005 -

COMPUCOLOR II

PROGRAMMING AND REFERENCE

MANUAL

Copyright (e¢) 1978 by Compucolor Corporation

999209 Rev. 1

"

CHAPTER

1.

TABLE OF CONTENTS

TITLE
INTRODUCTION
1.1 The CCHPUCOLOR II o m
1.2 Initializing and Running BASIC S i e
1.3 Using the Manual. « « ¢« ¢« ¢ ¢« ¢ & o &
ESSENTIALS FOR SIMPLE PROGRAMMING

1 Variables

2. o
2.2 Numbers . . . “ & % % & ¥ N & &
2.3 Arithnetic Opur Lions ¢ % w w o m W

2.3.1 Priority of Arithnetic Operations .

2.4 The Assignment Statement., o o o . .

BEGINHING TO PROGRA!N

1 Sanple Prograu. . e
2 The PRINT Stﬁtclnnt « 6w o o
.3 The RUN Command « v ¢« v ¢« ¢« ¢« o o o &
§ Correcctions . . v om o o® s & % W @

5 The REIH ¢ tctcnrnt N
6 The LIST Command. . v v +v v o o o o &
% The EWD Statement « ¢ . &+ ¢ ¢« ¢« o &
8 The CONT Commarni. « « + o o o o ¢ o
9 Multiple Statement Lines. « < « o o &
3.10 Introduction to Strings. . . « . «
3.11 The CLEAR Statement. . . . « « + « &
3.12 Imnediate Mode . « ¢« ¢ + ¢ ¢« « ¢ o &
3.13 Samples and Examples . . « « « « &

WwWwwwwwwww
. « o o ¢ .

.

MORE STATEMENTS, COMMANDS, AND FEATURES

The INUPUT Statement « « &« ¢ o ¢ ¢ o @
The DATA Statement. . . « ¢« ¢« « ¢ o &
The READ Stztement. . « « ¢« ¢« o ¢ « &
the NESTORE Statewent « ¢« ¢ ¢ ¢ o &

The GOTO Statement. . . ¢ ¢« ¢« ¢ ¢ o &
Ttelational Operators. . . . s W e
.6.1 Rclational Operators in Strlngs :
Logical Cperators . . « %
The IF THEN and IF GOlO Statcmcnts. %

P — g
.

& =&
« e e s e
O o=V ZWN =

- =
.

The FOR and NEXT Statements

PAGE

N =

ANl TwWw

10
10
1
1
12
12
13
14
14
15

16
17
17
18
19
19
20

23
2y

FUIICTIONS AND SUBROUTINES

5.1 Functions . . . e & a s

5.

5

U'IU'I

1.1 The Sine and C031nc Functions;
SI”(X) dnd COS(X) . . [] [} .]

1.2 The Arctangent and Tangent Functions;

ATN(x) and TAN(x) . . . « « .
.1.3 The Square Root Function; SQR(x)
100

.

.« 29

The Exponential and Logarlthmlc Functions;

EYP(x) and LOG(x) . . .

5.1.5 The Absolute Value Functlon, ABS(x))
5.1.6 The Greatest Integer Function; INT(x) .
5.1.7 The Randcm Number Function; RND(x). .
5.1.8 The Sign Function; SGH(x) o p
5.1.9 The Position Function; P@S(x) .
5.2 User Defined Functions. « &« ¢« o« o & . 3
5.3 BASIC String Functions. . . « . . § .
5.% Subroutines . , . . 5 ¢ .
5.5 The ON GOTO and OV GO UB Statementu . @ .
ARRAYS

6.1 Introduction to Arrays. .« « « « « .

6.2 Subscripted Variables . « « « ¢ « &

6.3 Subscripted String Variables. . . .
6.4 The Dimension Statement . . « « o .

FURTHER SOPHISTICATION

7.

Formattiing the Printout.
.1.1 The Tabulator Function; TAB(x).
.1.2 The Space Function; SPC(x). . .
Imnediate Mode and Debugging. . .

.2.1 Restrictions on Imnediate Mode.
Machine Level Interfaces with DISK BASIC.
03.1 The WAIT Statcment.

2 The OUT Statement . . . « .« . .
.3 The Input Function; INP(x). . .
4 The Peck Function; PEEK(x). . .
.5 The POLE Statement.
6 The User Call Function;j CALL(y)
String Spacc Allocation

. 30
<3N

. 32
.33
. 34
. 34

37
39

. 42

. Uy
. U5
. 46
. 46
. 46
. 47
. U7
. ug
. U8
. U8
. u8

. 49

-

10.

DISK FEATURES

8.1 Loading and Saving Preogranms .

8.1.1 Program Chaining.
8.
8.3 1
8.4 The FILE Statcment.
4
y

5 Random File Open.
.4
]

Dunp File Buffers
Filc Attributes .

A4
4

Iu

QO’\U‘EWN—l

=g
@

T GET Statement . .
The PUT Statenent . .
I
S

mproving File Access
torcge Requirements.

2
3
y
8
8
8
8
8
8
8
5
6
T
8

8
8.
8.
8.
COLOR, GRAPHICS,
9.1 The PLOT Statcement.
9.2 Color . . . ¢
9.3 Cursor ConLrol’ .
9.4 Veclor Graphics .

THE FILE CONTROL SYSTE!

10.1 Introduction to FCS.
10.2 FCS Commands .

Randoml File Closec .

Random File Creation.

File Error Trapping .
File Error Determination.

.

.

Using the File Control Systemn
ntroduction to Random Files.

AND OTHER TERMINAL

Through

. .

.

BASIC

FEATURES

61
61

. 63

61

Th
T4

APPENDICES

SECTION TITLE PAGE
A. DISK BASIC

.1 BASIC StatementS. . « « « « o o ¢« o o « o« o« « o 80
«2 BASIC Operators « v « « o o « o o « o « s« « o« o 84
.3 Standard Mathematical Functions
4 Standard String Functions . +« « +v ¢« « o« o « .« . 86
.5 BASIC Error CodeS o + « « « o o o o « o o« o o o« 87
.6 BASIC Random File Error Codes « « « « « o« « « « 89

> x> > X

B. FCS (FILE CONTROL SYSTEM)

1 FCS Commands. « « o o ¢« o« o ¢ « o o o o
2 FCS Error Codéeés « v v ¢ ¢« ¢ « o« o o s+ o o o« « o« 92

C. CRT COMMANDS

C.1 Control Codes « « v o o ¢ « o s o o« o« o o o o « 95
C.2 Status Word Format. . +« ¢« & ¢ ¢ ¢« ¢« ¢ o o o o« « 97
C.3 Escape CoUCSe « « « « o« o o s o o o o o o o « o« 97
C.4 Baud Rate Selection . + & & &+ ¢ ¢« ¢« « o « « « » 98
C.5 Graphic Plot Submodes + « v o + ¢« o o« « ¢ ¢ « « 99
C.4

1 .6 Incremental Direction Codes . . « &« « « « « « » 99
D. INTERNAL FLATURES
D.1 Key lMemory Locations. . « ¢« + ¢« ¢« ¢« ¢« « o « « 100
D.2 Port Assignments. . . ¢« « ¢« ¢« « ¢ o« ¢ o« o« « & 100
D.3 Firty Pin Bus L] . L L] L] L] k] L] . L] T . L] . L] - 102
D.u RS“‘232C Inter‘faCC L 3 [L) 102
_i
PR)
E. - ASCII VALUES 103
F. - CCHPUCOLOR CHARACTER SET 104

<ty

>

1. INTRODUCTION

1.1 The CO!PUCOLOR II

The COMPUCOLOR II will gladly introduce itself with but the
slightest help frowm the user. Its brilliant colors and amazing
versatility are easy to get to inou. Once plugged in, it is ready to
perforn a uyriad of tasks, both «imple and conplex. The user can
easily insert a disk {rcm the COMPUCOLOR 1library and have at his
fingertips an assortuent of gawes, rceipes, financial statements and
more. DBut for the more adventurous, (and COMPUCOLOR makes it fun to be
adventurous!) CONPUCCLOR II offers the opportunity for the user to
write his own progranc. The language of communication for the
COIPUCOLOR II is ©DASIC, a popular computer language developed at
Dartmouth University to make progreamming easy for everyone.

BASIC is a single user, conversaticonal programmning language which
uses simple statements and familiar wmathematical notations to perforn
operations., BASIC is one of the simplest computer lanpguzges to learn,
and once learned providcs the facility found in more advanced
techniques to perforn intricate manipulations and express problems
efficiently. ;

Like any other language, BASIC has a prescribed gramnar to which
the user rust adiicre in order to produce statements and commands
intelligible to the computer. The following pages provide a quick but
coniplete introduction to the BASIC language and the features of the
COMPUCOLOR 1II. .Careful reading and 1liberal experimentation with
examples will enable a user to start prograuning in a " short time,
Adopting a leisurely pace with the text will cnsure that the ncw user
will find programming nuch easier than suspected.

1.2 Initializing and Running BASIC

Vhen the COMPUCOLOR II is turned on, the screen display for Model
3 will be:

-DISK BASIC £001 V.6.78 COPYRIGHT (C) BY COMPUCOLOR
MAXIMUM RA!! AVATLABLE?

7473 BYTES FREE

READY

The number of frece bytes on Models 4 and 5 will be 15665 and 32049,
respectively. The READY messare indicates that the machine is now
ready to accept any BASIC programmning statements that the user wishes
to enter. If the user wishes to uce a prepared program from one of the
COMPUCOLOR II diskettes, the diskette must be slid into the.opening on
the right hkand side of the mnachine, and the door must be closed.,
Pushing the AUTO kecy (the brown key on the upper left of the keyboard)
will result in a list or "MENU" of available prograns on the screen. A

-1-

choice is indicated by typing in the number of the selected program.
The program will be loaded and the COMPUCOLOR II will proceed with
instructions on how to use tlie program.

If, when the machine is powered on, the proper message does not
appear, the user should hold the shift and control keys down while
striking the CPU RESET key. This should produce the correct screen
display, howevcr, there may be a delay of 5 or more seconds before it
appears. On the deluxe or extended keyboards the command key can be
struck in place of the combined CONTROL SHIFT sequence.

C It may often be neccssary to reset BASIC after the machine has
been turned on and a program or two has been run. The first step to
reinitializing BASIC is striking the CPU RESET key. The screen will
output:

COMPUCOLOR II CRT HODE V.6.78

Then, the ESC and W(BASIC) keys arc hit En sequence. The machine will
print the message:

DISK BASIC 8001 V.6.78 COPYRIGHT (C) BY COMPUCOLOR
MAXIIUM RAM AVEATLARLIE?

If the user dcszires no specific amount of ncrory, then simply striking
the RETURM key will bring the READY nessage to the screen. If,

however, a ccertain amount off neuwory needs to be specified (as is
necessary in gsome applicationz), the user must type in a number up to
8192, (or 16384 if tne machin. is a Modcl 4; or 32768 for llodel 5)

subtracting from Lhis maxinw: any anount of space to be rcserved as not
for use by BASIC. The uscr then strikes tlie RETURN key and the machine
will return the number of {ree bytes and the READY message. The
nachine is now ready, as when it is lirst turned on, to either accept a
user's program or load a COHPUCOLOR II program from an inserted
diskette. £
If the machine will not rcturn the proper nessages and/or numbers,
the local dealer should be contacted for assistance.

1.3 Using the Manual

BASIC has thirty (30) key word program, editing, and command
statements, eighteen (18) mathcmatical functions, nine (9) string
functions and thirty (30) two-letter error messages. These features
are described in detazil in the next chapters, thus providing a ready
reference to BASIC's capabilities. If the user is unfamiliar with the
BASIC language, then the remaining portion of this manual should be
studied in sequence while having a COMPUCOLOR II available to run the
exanples given. .

Compucolor Corporation has a number of BASIC programs on -the
COMPUCOLOR II diskettes that are available at nominal prices. 1In
addition, Compucolor will pay for BASIC programs that are provided on
diskettes when properly docuuented and accepted for release on future
Compucolor diskettes. Enjoy programming in BASIC!

]

2. ESSENTIALS FOR SIMPLE PROGRAMMING

2.1 Variables

BASIC uses variables as a basis for conveying values in

programning statements. The variable is an algebraic symbol
representing a number which the user assigns to it. A variable is
formed in one of three ways. It can be a letter alone, a letter

followed by a number, or two letters. For example:

Acceptable Variables Unacccptable Variables
A 3F - begins with a digit
c2 25 - numeric constant
XY
Q

A variable longer than 2 charactcrs will be accepted by BASIC, but
BASIC will only read the first two characters. Thus, these must be
distinct from any other variables used in the progran. For example,
CAT 1is not a new variable in a program alrcady using the variable
CANCEL. HWUords used as specific commands or statements in BASIC are
reserved, and cannot be used as variable names (e.g. LIST, RUN, READ,
etc.). If such a word is used, BRASIC will not accept it as a variable,
and will usually return an error message. Certain other special
purpose variables are acceptable in BASIC, and will be described in
later sections of this manual.

When the user assigns a value to a variable, it will retain that
value until it is changed by a later statement or calculation in the
program, All numeric variables, until given a value by the user, are
assuned by the computer to have the value 0. String variables are
initially assumed to be equal to the null string (see Section 3.10.)

This assures that 1later changes or additions will not misinterpret
values.

2.2 Numbers

BASIC treats all numbers (real and integer) as decimal numbers,
that 1s, it accepts any decimal number and assumes a decimal point
after an integer. The advantage of treating all numbers as decimal
numbers is that any number or symbol can be used in any mathematical
expression without regard to its type. Numbers used must be in the
approximate range 1073% ¢ v <10t3%

In addition to integers and real numbers, a third format for
numbers is recognized and accepted by BASIC. This is the scientific or
"E-type" notation, and in this format a number 1is expressed as a
decimal number times some power of 10. The form is:

XXEn

where E represents "times 10 to the power of"; thus the number is read,
"xx times 10 to the power of n." For example:

25.8E2 = 25.8 ® 100 = 2580

Data may be input in any one or all thrce of these forms. Results of
computations are outpul as decimals if they are within the range
.01<n<999999; othervwisce, they &re output in E format. PBASIC handles
seven significant digits in norrnel operation and prints 6 decimal
digits as illustratcd balow:

Value Typed In Value Outpul by BASIC
.01 .01
.0099 9.9E-03
999999 909999
1000000 1E+06

BASIC automaticclly suppresses the printing of 1leading and
trailing zeroes in integer and decimal numbers, and, as can be seen

from the preceding examplcs, formats all f'loating point numbers in the
form:

(sign) xX.xxxxxE (+ or =)n

where x represents the number carried to six decimal places; E stands

for "times 10 to the power of"; and n represents the value of the
exponent. For example:

-3.47021E+08 is cqual to -347,021,000
7.26E-04 is equal to .00726

Floating point format is wused when storing and calculating mnost
nunbers. . HOTE: Becausce unemory size limitations prohibit the storage of
infinite binary numbcrs, some nunbers cannot be expressed exactly in
BASIC., Accuracy is approximately 7.1 digits, and errors in the 6th
digit can occur, For example; .999998 may be the result of somea
functions instead of 1. Discrepancies of this type are magnified wher.
such a number is used in mathematical operations.

2.3 Arithmetic Operations

BASIC performs addition, subtraction. multiplication, division and
exponentiation. Formulas te be evaluated are represented in a format
sircilar to standard mathematical hotation. The five operators used in
writing most formulas are:

~lj

Symbol Operator Exanple . Meaning

+ X+Y Add Y to X ‘
- X-Y Subtract Y from X /-
* X%y Multiply X by Y

/ X/Y Divide X by Y

- X'y Raise X to Yth power

BASIC also permits the wuse of unary plus and minus. The - in
-A+B, or the + in +X-Y are ecxamples of such usage. Unary plus is
ignored, while unary minus is treated as a zcro minus the variable. The
expression -£+B is processed as 0-A+D.

2.3.1 Priority of Arithmetic Operations

When more than one operation is to be performed in a single
fornula, as is most often the case, certain rules must be observed as
to the precedence of operators. 1In any given mathematical fornula,

BASIC performs the arithmctic operations in the following order of
evaluation:

1. Parenthescs receive top priority. Any expression within
parenthescs 1is cvaluated beflore an unparenthesized
expression

2. Exponentiation

3. Unary minus

4y, Multiplicetion and division (of equal priority)

5. Addition and Subtraction (of equal priority)

6. Logical operatorz in the order HNOT, AND, then OR. (see
Section 4.7)

If the rules above do not clearly designate the order of priority, then
the evaluation of the expression proceceds from left to right. The
expression A"B”C is evaluated from left to right as follows:

1 * AAB
2. (result of step 1)°C

step 1
answer

(1]

., The expression A/B*C is also evaluated from left to right since

multiplication and division are of equal priority:

1. A/B

) step 1
2. (result of step 1)*C

answer

The expression A+B¥C"D 1is evaluated as:

1. C°D = step 1
2. (result of step 1)%B = step 2
3. (result of step 2)+A = answver

Parentheses may be nested, or enclosed by a second set (or more) of
parenthescs. In this case, the expression within the innermost
parentheses is evaluated first, and then the next innermost, and so on,
until all have becen evaluatcd. In the following example:

A=17% ((B2+4) / X)

the order of evaluation is:

L)

1. B72 = step 1
2. (result of steop 1)+4 = step 2
3. (result of step 2)/X = step 3
4, (result of step 3)#*7 = A

Parentheses also prevent any confusion or doubt as to how the
expression is evaluated. Tor cxample:

AMB"2/T7+B/C%D"2 ((A*B"2)/7)+((L/C)%¥D"2)

Both of these formulas are exccuted in the same way, but the order of
evaluaton in the second is nade more clear by the usc of parentheses.

Spaces may be used in « similar nmnanner. Since the BASIC
interpreter ignores spaces (cxcept when enclosed in quotation marks),
the two statcments:

B = D2 + 1 B=D"2+1

are identical in meaning and consequence, but spaces in the first
statement providec case in reading when the line is entered. When such
a statement is subsequently printed by the computer, spaces entered on

input are ignored, and the spacing will appear differently on the
screen.

2.4 The Assignment Stateument

The user assigns a value to a variable by the use of the equals

(=) sign. The variable must appear on the left of the statement and
its value on the right. For exanple:

A =2
Qs = 7.5

The statements 2=A , and 7.5=Q4§ , although algebraically equivalent
to the above examples, arec not lcgal in BASIC, because the machine
always takes the value on the right of the equals sign and assigns it
to the variable on the left of the sign. The number 2 is not an
acceptable variable, and thc machine cannot replace its value with that
of "A". The fundamental difference in ncaning and use of the equals
sign in algebra and in BASIC nust be clearly understood to avoid
confusion. In algebraic notation, the formula X=X+1 1s meaningless.
However, in BASIC (and in most other computer languages), the equals
sign designates replacement rather than equality. Thus, this fornmula
is actually translated: '"add one to the current value of X and store
the new result back in the same variable X." Whatever value has
previously been assigned to X will be combined with the value 1. An
expression such as AzB+C instructs the computer to add the values of 3

"and C and store the result in a third variable A. The variable A is

not being tvaluated in terms of any previously assigned value, but only
in terms of B and C. Thercfore, if A has been assigned any value prior
to its use in this statement, the old value is 1lost; it is instead
replaced by the value B+C. For cxample:

X=2 Assigns the valuc 2 to Lhe variable X.
X=X+1+Y Adds 1 to the current value of X, then adds the
valuec of Y to the result and assigns that valuc
to X.
8

3. BEGIHIING TO PROGRAM

3.1 Sample Program

The lines below form an acceptable BASIC program which the machine
will understand and coupute. The nuiabers at the start of each line are
an essential part of the program. FEach statement must have a line
number in order to be ciccuted when the program runs on the machine.
The computer will process each 1line in ascending nuwerical order,
regardless of the order in which it is typed into the machine.

10 A=8

20 B=7

30 C=A+B
40 PRINT C

The line number itselfl may Le any integer from 0 to 65529, and
lines may be numbercd in increments as low as 1, but it is a good
programning practice to number program statements in increments of 10
or 100. This lcaves adcequate rcom for insertion of statements at a
later time withiout the nccessity of renumbering the entire program.
Hitting the return key at the c¢nd of a numbered line automatically
enters that lin¢c into the computer and stores it in memory.

3.2 The PRINT Statement

Line 40 of the abovc program is a PRINT statement. This statement
is necessary in order to retricve the calculation the machine has made.
After line 30, the computcr has solved the problem and assigned the
value 15 to the variablc C. Without the PRINT statcment, however, it
will simply store that information for future use, and it will not be
visible to the user. The PRINT statement need not always give the
value of a single variable; it may contain an expression. Therefore,

in the preceding progran, the same result would have appeared if the
program had read: .

10 A=8
20 B=7
30 PRINT A+B

Other examples of the usc of expressions in PRINT statements are:

10 A=400 100 R =5
20 PRINT A#975 20 P = 3.14159
30 PRINT P¥R"2

The PRINT statement can also be usc¢d Lo print a message or string
of characters, either alone, or together with the evaluation and
printing of numeric values. Characters to be printed by are enclosed
in double quotation marks. For example:

10 PRINT "CLASSIFIED"
20 PRINT "INFORMATION"

gives:

CLASSIFIED

INFORIMATION
and:

30 A=50

20 PRINT "THE WEXT HUMBER 1IS",A
gives:

[y

THE KEXT NUMBER IS 50

When a character string is printed, only the characters betwecn
the quotes appear; no leading or trailing spaces are added. l.eading
and trailing spaces can be added within the quotation marks using the
keyboard space bar; spaces appear in the printout exactly as they are
typed within the quotation marks.

A convenicent shortcut in DISK BASIC is the use of the question

mark (?) in place of the word "PRINT" in any PRINT statement. For
example:

10 ?A is equal to 10 PRINT A
30 ?"MAGIC" is equal to 30 PRINT "MAGIC"

When the program is listed by the machine, however, the question mark
is replaced by the word PRIiIT. (For a more detailed description of the
PRINT statement, see Section 7.1)

3.3 The RUN Command

Once a progran has been properly written and entered into the
computer, the wuse of the RUN command will cause it to be processed by
the machine and return the result of the program. When the last.
program 1linc is typcd and entered, the wuser types RUN and hit..
RETURN. Because RUN is a command and not part of the actual progren,
it needs no 1line nunber. The machine will return the result and the
nessage READY. The READY message indicates that the machine is

prepared to accept further additions or changes to the program. For
exanple:

Program : ’ Machine Response

10 R=50

20 T=50

30 PRINT R*T 2500
RUN READY

If the user desires to write a complctely new program, the machine
must be cleared of existing data by re-initializing BASIC. (see 1.2)

3.4 Corrections

Corrections can be casiiy made while programaing. If, while
typing a line, the user nakcs a mistake, the < can be used to delete
the last character typed. The € nmoves the cursor back one space at a
time, and it can be struck repeatedly until the error is erasecd. The
line is then retyped from that point on, or, if the rest of the
original ‘line was correct, the —> can be used to restore that portion
of the line rcrmoved by the <.

If the line contzining the cerror is alrcady entercd, a correction
is made by retyping the line corrcctly, using the same linc number.
The computer will replace the faulty line with the one most recently
typed.

If the user desires to delcte an entire line from the progren,
entering that 1line nuumber and hitting RETURN will remove it from the
program. The line currently being centcred can be deleted by typing the
ERASE LINE key.

The ERASE PAGE key will clear the entire CRT screen, but it does
not change or disturb any BASIC statements in any way. It is often
used to obtain a Blank workspace on the screen while programming.

3.5 The REM Statcment

It is often desirable to insert notes and messages within a
progranm. Such data as the name and purpose of the program, how it is
used, how certain parts of the program work, and expected results at
various points are wuseful things to have present in the program for
ready reference by anyone using that program.

The REMARK or REM statement is used to insert remarks or comments
into a program without these comments affecting execution. Remarks do,
however, use meriory in the user area which may be needed by an
exceptionally long program, -

The REM statement must be preceded by a line number. The message
itself can contain any lcgal character on the keyboard, ineluding soine
of the control characters, BASIC coumpletely ignores anything in a line
following the letters REM. Typical REM statcements are shown below: .

* 10 REM THIS PROGRAM COMPUTES THE
15 REM ROOTS OF A QUADRATIC EQUATION

&

-10~

3.6 The LIST Command

The user can see a listing of his program on the screen by typing
LIST and hitting RETURN. Such a 1listing malkes finding errors much
easier, and facilitates additions and changes to the progran. A
portion of any program nay be viewed by typing LIST followed by a line
number. The screen will show a listing of that line and all following
lines in the program. Because the machine will scroll the program very
rapidly, the user may wish to stop the listing at some point for a
closer look. litting the BREAK key will cause the scrolling to halt,
Hitting the RETURN key will resume the listing. To stop the listing
altogether, so that the user can edit or change the program, th:
LINFEFEED key is struck. This will producc the message READY.

3.7 ‘The END Statement
The optional END statenent is of the form:

END .

Upon executing an END statement, progranm execution is terminated and
the READY message is printed. Progran exccution can be continued at
the statement imnediately following the END statcment by entering a
CONT comnmand. For cxample, exccuting the following lines:

10 PRINT 1: END: PRINT 2
20 PRINT 3

gives the following responsc:

RUN
1

READY

CONT
2
3

_READY

In this fashion the END statement can be wused to generate program
breaks to facilitate debugring a program. ’
Program execution will also terminate automatically when the
progran runs out of statements. Note that in both cases currently open
files are not closed. :

-11-

3.8 The CONT Comnand
The CONT command is of the form:
cotr

This command 1is used to continuce programm cxecution at the next
statement aflter a prograa breall or error is detected., Execution can be
restarted at e spccific line nunber by using a GOTO statement instead
of COIT.

A CI! error nessage is printed if it is impossible to continue
execcution after a profrainl broak, This message will appear if no
progran exists or a ncw or corrccted line vas cntered into the progran.

3.9 Multiple Statement Lines

For convenicnce in prosramning, DISK BASIC allows the user to
place more than one statenent on a single nuwnbered line. The gernieral
form is: :

statement:istatement: ... statement

where 'statement' is any pcrmicsible RASIC stetenient. Any number of
statemcnts may be put together on one line, with the restriction that
line length must not excced 96 characters. The colon (:) denotes now
statenents and separates them from one another. The statements are
exccuted in order from left to right.

The user nust talte note of a few statements whosc usce in multiple
statenent linces raquirec sone caution. '

Because BASIC ignores anything after REN, in the following
statement:

A=50:B=25:C=4 :REM TIIS PROCGRAHM ADDS:PRINT A+B+C

the result of A+D+C will never be computed and printed.

Because GOTO cauzes an iwmmediate and unconditional transfer of
control, anything following GOTO in a multiple statement line will
ncver be cxecuted. DATA statements that appear after GOTO's will,
however, be read by any corresponding READ statements.

Care mnust be taken when IF...THE!I statements are used in nultiple
statement lines. If the result of the test is false, control will not
pass to the next statcment in the line, but rather to the next numbercd
statement. For cxample:

50 C=2:A=5:IF A=6 THER PRINT 1:PRINT 2
60 IF C=2 THEN PRINT 3:PRINT 4

This progrim will print out the numbers 3 and 4. If the IF...THEN
statenent comparison is truc and dees not pass control to- a specific
line number, thc next statement to the right in the nultilple statement
linc will be executcd. Fer CRanple:

40 A=10: IF A=10 TIEN B=500: PRINT A+B

will result in sctting B to 500 and the printing of the result of A+B,

3.10 Introduction to Strings

The previous sections described the manipulation of numerical
information only; howevoer, DISK BASIC also processes information in the
form of character strings. A string, in this context, is a sequence of
characters treated as a unit. A string is composed of alphabetic,
numeric, or spccial characters. The mazimum length of quoted strings
and strings cntercd using the INPUT statcement is determined by the
length of the input line buffer which is 96 characters or bytes.

Any variable name followed by a dollar =ign (&) character
indicates a string variable. TFor cxamplea:

AS
C7$ fﬁ
LCOHGS

are simple string variables and can be used as follous:

10 A$="HELLO"
20 PRIUT A%

Note that the string variable A$ is separate and distinct from the
variable A. In DISK BASIC, all control characters above control code C
(or 3) are legal charccters within quotes (") except for the following:

Control .Code K or 11 or crase line
Control Code L or 12 or erase page
Control Code M or 13 or return/cnter
Control Code Y or 25 or cursor right
Control Code Z or 26 or cursor left

Concatenation is a string operator that puts one string after
another without any intervening characters. It is specified by a plus
sign (+) and works only with strings. The maxXimum length of a
concatenated string is 255 characters. In eacih of the following

examples, D$ contains the rcsult of concatenating the strings A$, B$,
and C$.

10 A$ = t|33n 10 I\$ = "I AM"

20 BS = ma2v 20 B3 = " A CLEVER"

30 C$ = ")“lll 30 C$ =" CO“PUCOLOR II“

40 D$ = A$+BS+CS 50 D$ = AS+BS+CS

50 PRINT D$ 50 PRINT D3

RUN RUN .

332244 I AM A CLEVER COMPUCOLOR II

-13-

3.11 The CLEAR Statement

The CLEAR statecrent clears all the user's variables including
simple variables and arrays. The CLEAR statement has two ‘forms as
shown below:

CLEAR
and
CLEAR expression

The diffcrence betucen the two forms is that the form with the
expression specifies the new number of bytes in the string space. Upon
entry to BASIC the string space is initialized to 50 Dbytes. For
cxample, dn prograns that heavily use strings, this allocation can be
changed by executing a CLEAR 250; it snhould be one of the first
executed statements in a program because it &lso clears all the
variables. For further information on now strings are allocated in the
string space, see Section 7...

3.12 Immediate llode

It is not necessury to write a complcte program to use DBDASIC,
Most of the statements discussed in this manual can be included in a
program for later exccution or given as commands which are immediately
exccuted by the DISK BASIC interpreter. This lattcer facility makes
BASIC an -extrcmely powerful calculator.

BASIC distinguishes between lines entered for later execution and
those entered fdr inmmediate execution solely by the presence (or
absence) of line numbers. Statements which begin with line numbers are
stored as part of the program; statecments without 1line nunmbers are
exccuted immediately upon being entered into the system. Thus the
line:

10 PRINT "THIS IS A COMPUCOLOR II“

produces no action &t the console upon entry, while the statement:
_PRINT "THIS IS A COMPUCOLOR II"

causes the immediate output:
THIS IS A COMPUCOLOR II

Multiple statements can be used on a single 1linc in immediate
mode. For exanmple:

A=1:PRINT A gives: 1

Program loops are also allowed in immediate mode; thus a table of
squares can be produced as follows: (For a description of FOR HEXI
loops, see Section 4.9)

~14-

3.13 S8a

FOR I=1 TO 10: PRINT I, I"2:NEXT I

= OV OOV &ZWN =
w
(o))

0 100

READY

mples and Examples

-In order to become more adept at programming, any user previously
unfamiliar with BASIC should set aside sone
with the information thus far provided in this manual. Simple programs
such as the ones bolow male good practice efforts.

10
20

30
4o
50
60
70

A

REM THIS PROGRAM CO!PUTES
REM THE AREA OF A CIRCLE
REM THE FORMULA IS:

REM AREA z PI # RADIUS " 2
PI = 3.14159

R =25

A =PI #R " 2

PRINT "AREA = ",A

10
20
30
0
50
60
70
80
90
95

Irite programs to solve these problems:

A

How many cubic yards of soil can be
into put into a box that mcasures
5 feet by 42.5 inches by 1 yard?

time for experinentation

B

REM THIS PROGRA!f AVERAGES
REM FIVE NUMBERS

A=23

B=1

C=188

D=5

E=89

T=A+B+C+D+E

AV=T/S

PRINT YAVERAGE =",AV

B

Convert 40 degrees Fahrenheit
into degreces Celsius using
the formula C = (5/9)#*(F-32"

%. HORE STATEMENTS, CC:RIAIDS, AUD FEATURES

4.1 The INPUT Statement

The INPUT statement 1s uscd vhen data values are to be entered
from the terninal keyboard during program cxccution. The foria of the
statement is:

JINPUT list

where 'list? is a list of variable nanes separated by commas. For
example:

10 INPUT A,B,C

causes the computer to pause during execution, print a question mark,
and wait for the entry of thrce nuiseric values separated. by comumas.
The values are input to the computer by typing the RETURN lkey.

If too few values are entered, DASIC prints another ? to indicate
that more data values are necded. If too many values are used, the
excess data values on that line arc ignored, but the program will
continue. The values cntercd in response to the 'INPUT statement cannot
be continucd on another line and are terminated by the RETURN key.
Values must be scparated by commas if more than one value is entered on
the same line.

When rcading -numeric values, spaces are ignored. VWhen a ﬂon-space
is found, it is assumed to be part of a number; if not, then the
question mark is repeatced. The number is tcrminated by a comma, colon,
or carriage return.

When reading string items, leading spaces are ignored. VYhen a
non-space charzcter is found, it is assuned to be the start of a string
item. If this first character is a quotation mark ("), the item is
taken as being a quoted string and all charactcrs between the first
double quote (") and a mztching double quote or carriage return are
returned as characters in the string. Thus, quoted strings may contain
any legal character except double quote. If the first non-space
character'is not a double quote, then it is assumed to be an unquoted
string constant. The string will terminate with a comma, colon, or
carriage recturn.

Wthen there are scveral values to be entered via the INPUT
statement, it is helpful to print a nessage explaining the data neceded.
For example:

10 PRINT "YOUR AGE IS"
20 INPUT A

The INPUT statenent can also contain quoted strings. The above example
could be written: s

-16-

10 INPUT "YOUR AGE IS?";A

Note that when a quoted string is included in an INPUT statement, the
normal ? is not printed as a prompt character, and if desired, nmust be
included as shown within the quotcs ubove.

The INPUT statcment ullows BASIC to be programmed to accept direct
questions and answers as well as fill-in-the-blank applications.

If the user wvishes to stop a prograzm while it is waiting at an
input statement, LINEFERD and RETURN must be typed in sequence. If
RETURN is typed in response to the INPUT prompt (?), DISK BASIC will
assume the value 0 for numeric variables, and "0" f'or string variables,
If there arc additional variables in the INPUT list, a question mark
(?) will be printed as discussed above.

4.2 The DATA Statcrient

The DATA statement is used in conjunction with the READ statement
to enter data into an cxccuting program. One statcment is never used
without the other. The form of the statenent is:

DATA value list

where valuc list contains the nuubers or stringGs to be assigned to the
variables 1listed in a RUAD statement. Individual items in the valuc
list are separated by comnas; strings arc usually enclosed in quotation
marks. FPor cxanple:

. 150 DATA 4,7,2,3,"ABC"
170 DATA 1,31E-3,3,171311

The scanning of numeric and string itens 1is didentical to thes
described above in the INPUT statement. An SM error message can resulc
from an improperly formatted DATA list.

The location of DATA statenents is arbitrary as long as they
appear in the correct order; however, it is good practice to collect
all reclated DATA statements near each other.

YYfhen the RUN command is executed, BASIC scarches for the first
DATA statement and saves a pointer to its location. Each time a READ
statement 1is encountered in the program, the next value in the DATA
statement is assigned to the designated variable. If there are no more
values in that DATA statcment, BASIC looks for the next DATA statcment.

4.3 The READ Statemcnt

A READ statement is used to assipgn the valucs listed in the DATA
statenents to the spcceified variables. The READ statemnent is of the
forn:

READ variazble list
The items in the variable list may be simple variable names or string

variable names und are scparatcd by commas. For exanple:

-17-

10 READ A, B$, C
20 DATA 12, "hW2", .12E2

Since data must be read before it can be used in a program, READ
statements generally occur near the beginning of the program. A READ
statement can be placed anywhere in a nultiple statecment line.

If there are no data values available in the DATA statements for
the READ to store, the out of data message below is printed:

OD ERROR IN xxxxx
READY

Items in the data list in excess of those needed by the prograzm's
READ statements are ignored.

4.4 The RESTORE Statement

The RESTORE statenent causes the program to reuse the data from
the first DATA statemcnt, or, if a linc number is specified, from the
first DATA statement on or after the specified line. The two forms of
the RESTORE statement arc as follous:

RESTORE
and

RESTORE line number

For exanmple:
100 RESTORE 50

causes the next READ statement to start reading data from the first
DATA statement on or after line 50. The following example shows how
the RESTORE statement functions:

10 INPUT " ENTER 1 FOR NUMERIC, 2 FOR STRINGS:"; A

20 IF A = 2 THEN 200
. 100 RESTORE 190

110 FOR I = 1 TO 5 READ B: PRINT B: NEXT I

120 GOTO 10

190 DATA 10, 20, 30, 40, 50, 60

200 RESTORE 290

210 FOR I = 1 TO 5 READ B4: PRINT B$: NEXT I

220 GOTO 10 .

290 DATA "APPLE", "BOY", "CAT", "DOG", "ELEPHANT", "FOX"

If a 2 is centered, the first 5 string data values in 1line 290 are

printed; otherwise, the first 5 numeric data values on line 190 are
printed. The sixth data itcms inglincs 190 and 290 are not read.

-18-

4,5 The GOTO Statcnent

The GOTO statement is used when it is desired to unconditionally
transfer to some 1line other than the next sequential line in the
program. In other words, a GOTO statement causes an immediate jump to
a specified 1line, out of the normal consecutive line number order of
execution. The general formn of the statement is as follows:

GOTO line number

The line number to which the program jumps can be either greater or

‘lower than the current 1line number. It is thus possible to jump

forward or backward within a program. For example:

10 A=2

20 GOTO 50

30 A=SQR(A+14)
50 PRINT A,A*A
RUN

causes the following output:
2 y

When the program encounters line 20, control transfers to line 50; line
50 is executed, control then continues to the line following 1line 650.
Line 30 1is never executaed. Any number of lines can be skipped in
either direction, '

When written as part of a multiple statement 1line, GOTO should
always be the 1last cxccutable statement on the 1line, since any
statement following the GOTO on the same line is never executed. For
exauiple:

110 A=ATN(B2) :PRIIT A:GOTO 50

However, REH and DATA statements can follow a GOTO on the same line
because they are non-executable statements.

4.6 Relational Operators

Relafional operators allow conparison of two values and are
usually used to compare arithmetic expressions or strings in an
IF...THEN statement. The relational operators are:

MATHEMATICAL BASIC
SYHBOL SYIBOL EXAMPLE MEANING
| = = A=B A is eqdal to B.
< o« A<B A is less than B.
< <=, =¢ ?A<=B | A is less than or cqual

to B.

-19-

> o2 A>B A is greater than B.

2 >= , => A>=B A is pgreater than or
cqual to B.
= o, X AOB A is not equal to B.

The result of the relational operators is -1 for true and 0 for
false. '

4.6.1 Relational Operators in Strings

When applied to string operands, the relational operators test
alphabetic sequence. Comparison is made character by character on the
basis of the ASCII codes (See Appendix E) until a difference is foundﬁ
If, while the comparison is procecding, the end of one string is
reached, the shorter string is considered to be smaller. For example:

55 IF A$<B3 THEN 100

When 1line 55 is exccuted, the first characters of each string (A$ and
B$) are comparcd, then the sccond characters of each string, and so on
until the character in A$ is less than the corrcsponding character in
BS. If this test is true, -cxccution continues at line 100.
Essentially, the strings arc compared for alphabctic order. Below is a
list of the relational opcrators and their string interpretations.

In any string comparison, leading and trailing blanks are
significant (i.ec., "ABC" is not equivalent to "ABC ").

OPERATOR" EXAMPLE HEANING

= A$=B$ The strings A$ and B$§ are
alphabetically equal.

< A$<B$ The string A$ alphabetically
precedes B3, '

> ASO>B3 The string A$ alphabetically
follows BS.

<= A$<=B$ The string A$ is equivalent
to or precedes B$ alpha-
betically.

>= ' A$>=B% The string A$ is equivalent
to. or follows B$ alpha-
betically.

<O AS<OBS The strings A% and B$ are not

alphabetically equal.

~20~

4,7 Logical Operators

Logical opecrators are typically used ‘as DBoolean operators in
relational , expressions. For example, consider the following two

-sequences of statements:

100 IF

A = IEN 150
110 IF C <

B Tt
D THEN 150
and

200 IF A <> 5 THEN 22
210 IF B = 10 THEN 25
220 ...

0
0

In both gases the sequences can be simplified by using the logical
operators AND and OR. The first two stateuents can be combined into a
single statencnt:

100 IF A = B OR C < D THEN 150
Similarly, the second sequence of statenents is equivalent to:

200 IF A = 5 THEN IF B = 10 THEN 250
220 ...

This can be further siiaplificd to:
200 IF A =5 AND B = 10 TIEN 250

Following the rules of Boolcan algebra, the unary operator NOT_will
change true into false and vice versa. TFor example:

100 IF A <> 5 THEN 150
is equivalent to:
100 IF NOT (A=5) THEN 150

More complex expressions can be constructed by wusing combinations of
the-AND, OR, and NOT operators.

Logical operators may also be used for bit manipulation and
Boolean algebraic functions. The AND, OR, and NOT operators convert
their arguments into sixzteen bit, signed, two's complement integers in
the range -32768 to 32767. After the operations are performed, the
result 1is returned in thec sane form and range. If the arfguments are
not in this range, a CF error mecssage will be printed and execution
will be terminated. Truth tables for the logical operators appear
below. The operations are performed bitwise, that 1is, corresponding
bits of each argument are examined and the result computed one bit at a
time. In binary operations, bit 7 is the most significant bit of a
byte and bit 0 is the least significant.

9

-21=

P

AND

X
1
1
0
0

OR
X
1
1
0
0

NOT

. X
1
0

O = O <

O =20 =

nor
0
1

X AND Y
1

0
0
0

X AND Y
1

1
1
0

Y

4

Some examples will serve to show how the logical operators work:

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

-1 OR -2=-1

NOT 0=-1

NOT X=-(X+1)

63 = binary 111111 and 106 = binary 10000, so
63 AHD 16 = 16

15 = binary 1111 and 14 = binary 1110 , SO
15 AND 14 = binary 1110 = 14

-1=binary 1111111111111111 and 8=binary 1000,
so -1 AND 8 = 8

4 = binary 100 and 2 = binary 10 so 4 OR 2
binary 110 = 6

binary 1010 OR'd with itself is 1010=10

= = ~-binary 1111111111111111 and =2
1111111111111110, so =1 OR =2 = =1

the bit complement of sixteen zeros is sixteen
ones, which is the two's complement
reprcsentation of -1

the two's complement of any number is the bit
complement plus one.

A typical use of logical operations is "masking"--testing a binary
number for some predctermincd pattern of bits. Such numbers night come
from the computer's input ports and would then reflcct the condition of

some external device.

=-22=-

4.8 The IF...THEN and IF...GOTO Statements

The IF-THEN statement is used to transfer control conditionally
from the normal consecutive order of statement numbers, depending upon
the truth of some mathematical relation or relations. The basic fornm
of the IF statement is as follows:

THEN
IFF expression line numbcr
GOTO

where ‘'expression' 1is an arithmetic cxpression. If the result of the
expression is nonzero (truc), execution begins at the line number given
and procceds as usual. If the value of the expression is zero (false),
the next statement in numerical order will be exccuted. Usually the
statement is of the form: :

THEN
IF cxpression rel. op. expression line number
' GOTO

In this case, expressions caanot be mixed; both must be string or both
nust be numeric. Nuuneric comparisons arc handled as described in 4.6.
String comparisons are performed on the ASCII values of the strings as
described in 4.,6.1 and Appendix E. The rel. op. (relational operator)
must be as described in 4.6, and the line number 1is the line of the
program to which control is conditionally passed.

If the valuc of the cipression is true, control passes to the line
number specified. If the valuc of the expression is false, control
passes to the next statement in sequence. For example:

-

30 IF A=B THEN 20 40 IF A<>T1 GOTO 20
40 PRINT A+B 55 PRINT A
- 50 PRINT A"2 60 D=A+DB+*C

An alternate form of the IF,..THEN statement is as follows:
IF expression THEN statement

where the statement is any valid DISK BASIC staterient. °~ Note that
nultiple statements can follow the THEN if they are separated by colons
(:). With this form of the IF...THEN statement, if the expression
evaluates to non-zero (true), the statements following the THEN ars

executed. = Otherwise, control passes to the next numbered line. For
example:

10 A=10 :
20 IF A=10 THEN PRINT "TRUE":GOTO 40
30 PRINT "FALSE" 7

10 END

-23-

4.9 The FOR and NEXT Statements

FOR and NEXT statcments define the beginning and end of a loop.
(A loop is a set of instructions which are repeated over and over
again, each time being modificd in some way until a terminal condition
is reached.) The FOR statement is of the form:

FOR variable = expressionl TO expression2 STEP expression3

where the variable 1is the index, expressionl is the initial value,
expression2 is the terninal value, and cxpression3 is the incremental
value. For ecxamnple: :

15 FOR K=2 TO 20 STEP 2

causes thp progran to cexccute the designated loop as long as K is less
than or equal to 20. Fach time through the loop, K is incremented by
2, so the loop is is exccuted a total of 10 times. After executing the
loop, when K=20, prozgramn control passes to the linec following the
associated HNEXT statement, and the value of K is 22.

The index variable must be unsubscripted, although such loops are
commonly wused in dezling with subscripted variables. 1In such a cagr
the control variable iz used as the subscript of a previously defincu
variable. The expressions in the FOR statement can be any acceptable
BASIC expression.

The HEXT statement signals the end of the loop which began with
the FOR statement. The NEXT statcment is of the form:

MEXT variable

where the variable is the same variable specified in the FOR statement.
The variable is.actually optional, since any NEXT statement encountcred
is assumed by the computer to be closing the loop for the appropriate
FOR variable. Together the FOR and NEXT statements define the
boundaries of a program loop. When execution encounters the NEXT
statement, the computer adds the STEP expression value to the variable
and checks to see if the variable is still less than or equal to the
terminal exprecssion value. VYhen the variable exceeds the terminal
expression value, control falls through the 1loop to the statement
following the NEXT statement. Note that the variable is not necessary
since wvhen a HNEXT statement is encountcred it is assuwed it is for the
appropriate FOR loop variable.

If the STEP expression and the word STEP are omitted from the FOR
statement, +1 1is the assumcd value. Since +1 is a common STEP value,
that portion of the statement is frequently omitted.

The cxpressions within the FOR statement arce evaluated once upon
initial entry into thec loop. The test for completion of the loop is
made after each execution of the loop. (If the test fails initially,
the loop is still executed once.) :

=24~

The index variable can be modified within the loop. When control
falls through the loop, the index variable retains the value used to
fall through the loop.

The following is a demonstration of a simple FOR-NEXT loop. The
loop is executed 10 times; the value of I is 11 when control leaves the
loop; and +1 is the assumecd STEP value: '

10 FOR I=1 TO 10
20 PRINT I

30 HEXT I

40 PRINT I

.The loop itself is defined by lines 10 through 30.- The numbers 1
through 10 are printed when the loop is executed. After I=10, control
passes to line 40 which causes 11 to be printed. If line 10 had been:

10 FOR I = 10.TO 1 STEP -1
the value printed by line 40 would have been 0.
The following loop is executed only once since the value of I=U}

has been reached and the termination condition is satisfied.-

10 FOR I = 2 TO L) STEP 2

20 I = 44
30 NEXT I
If the initial value of the variable is greater than the terminal
value, the loop is still ecxecuted once. The 1loop set up by the
statcment: '

10 FOR I = 20 TO 2 STEP 2

will be executed only once although a statcment like the following will
initialize execution of a loop properly:

10 FOR I = 20 TO 2 STEP -2

,For positive STEP values, the loop is executed until the control
variable is greater than its final value. For negative STEP values,
the loop continues until the control variable is less than its final
value.

FOR loops can be nested but not overlapped. The depth of nesting
depends wupon the amount of wuser storage space available; in other
words, upon the size of the wuser program and the amount of RAHM
available. Nesting 1is a progranming tcechnique in which one or more
loops are completely within another loop. The field of one 1loop (the
numbered lines from the FOR statement to the corresponding NEY

statement, inclusive) must not cross the field of another 1loop. . For
example:

-25-

D

ACCEPTABLE MESTING ‘ UNACCEPTABLE NESTING
TECHNIQUES . TECHNIQUES

Two-Level Nesting

— 10 FOR I1 = 1 TO 10 10 FOR I1 = 1 TO 10
20 FOR I2 = 1 TO 10 20 FOR I2 = 1 TO 10
30 NEXT I2 30 NEXT I1
£yo FOR I3 = 1 TO 10 40 NEXT I2
50 NEXT I3
— 60 NEXT I1
Three-~Level HNesting
+—10 FOR I1 = 1 TO 10 ——10 FOR I1 = 1 TO 10
— 20 FOR I2 = 1 TO 10 —20 FOR I2 = 1 TO 10
30 FOR I3 = 1 TO 10 30 FOR I3 = 1 TO 10
40 NEXT I3 ; 40 NEXT I3
50 FOP I4 = 1 TO 10 50 FOR I4 = 1 TO 10
60 MEXT Id 60 NSXT Iu
— 70 NEXT I2 —— 70 NEXT I1
—— 80 NEXT I1 80 NEXT I2

It is possible to cxit frow a FOR-HEXT loop without the contrel
variable reaching the termination value, A conditional or
unconditional transfer can be used to leave a loop. Control can only
transfer into a 1loop which has been 1left earlier without being
conpleted, ensuring that termination and STEP valucs are assigned.

Both FOR and MNEXT statements can appear anywhere in a nultiple
statement linc. For example: '

10 FOR I = 1 TO 10 STEP 5: NEXT I: PRINT "I="; I
causes:

I= 11

" to be printed when executed.

In the case of nested loops which have the same endpoint, a single
NEXT statement of the following form can be used:

NEXT variable 1, ... , variable N

The first variable in the 1list nust be that of the most recent 1loop,
the second most recent, and so on. For example:

10 FOR I=1 TO 10
20 FOR J=1 TO 10
30 o4

100 MNEXT J,I

-26-

€

D

5. FUNCTIONS AND SUBROUTINES

5.1 Functions

BASIC provides functions to perform certain standard mathematical
operations which are frequently used and time-consuning to program.
These functions have three or four letter call names followed by a
parenthesized arguuent. They are pre-defined and may be used anywhere
in a.progranm.

Call Hare Function
ABS(x) Returns the absolute value of x,
ATN(x) Returns the arctangent of x as an angle in

radians in range £ /2), where 1 = 3.14159,

CALL(x) Cull the user wachine language program at
. deccimal location 33282. (8202 HEX) The D,E
rcgisters have value of X upon entry and

~valuce of Y upon return from machine language

routine.
COS(x) Returns the cousine of x radians.
- EXP(x) - Returns the value of e where c = 2.71828.
FRE(x) Returns the number of free bytes not in use.-
INT(x) Returns the greatest dinteger less than or

equal to x.

INP(x) Returns a byte from input port x. The range
for x is 0 to 255.

LOG(x) Returns the natural logarithm of x.

PEEK(x) Returns a byte from nemory address

-32768<%x<65535; or if x 1is negative the
memory address is 65536+X.

POS(x) Returns the value of the current cursor
position between 0 and 63.

RMD(x) Returns a random number between Q and 1.
SGN(x) Returns a -1, 0, or 1, indicating the sign of
X. 2

=27~

&

SIN(X) . Returns the sine of x radians.

SPC(x) Causes x spaces to Be generated. (Valid only
in a PRINT statencnt).

. SQR(x) Returns the square root of x.

TAB(x) Causes the cursor to space over to column
number x, (Valid in PRINT statement only).

TAN(x) Returns the tangent of x radians,

The argument x tc the functions can be a constant, a variable, an
expression, or another function. Square brackets cannot be used as the
enclosing characters for the argument %, c.g. SIHN[x] is illegal.

Function calls, consisting of the function name followed by a
parenthesized argument, can be wused as expressions anywhere that
expressions arc legal.

Values produced by the functions SIN(x), COS(x), ATH(x), SQR(x),
EXP(x), and LOG(x) have six significant digits.

5.1.1 The Sine and Cosine Functions; STN(:) and COS(:x)

The SIN and COS functions require an argument angle expressed in
radians. If the angle is stuted in degrees, conversion to radians mnay
be done using the identity:

radians = degreces ¥ (97 /180)

P
[

In the following cxample progran, 3.14159 is used as a nominal
value for i . P is set equal to this valuc at line 20. At line 40 the
above relationship is used to convert the input value into radians.
Note the use of the TAB function to produce a more legible printout.

10 REM CONVERT ANGLE (X) TO RADIANS, AHND

11 REM FIND SIN AND COS

20 P = 3.14159

25 PRINT "DEGREES",, "RADIANS",, "SINE",, "COSINE"
30 FOR X = 0 TO 90 STEP 15 '

40 Y = X¥(P/180)

.60 PRINT X, Y;TAB(32); SIN(Y); TAB(48); COS(Y)

70 NEXT X
RUN :
DEGREES RADIANS SINE COSINE
0. 0 0 1
15 . 261799 .258819 .965926
30 .523598 .5 .866026.
45 . 785398 .707106 .707107
60 1.0472 .866025 500001
75 ©1.309 .965926 .25882
90 1.5708 1 1.12352E~06

-28-

()

5.1.2 The Arctangent and TanZent Functions; ATN(x) and TAN(x)

The arctangent function returns a value in radian measure,'in the
range -T /2 to +%7/2 corresponding to the value of a tangent supplied
as the argumcnt (x). ,

In the following program, the input is an angle in degrees.
Degrecs are then converted to radians at 1line 50. At line 70 the
tangent value, 2, 1is supplied as the argument to the ATH function to
derive the value found on column 4 of the printout under the 1label
ATH(x). Also in line 70 the radian valuc of the arctangent function is
converted back to degrees and printed in the fifth column of the
printout as a check against the input value shown in the first column.

10 P = 3.14159

15 PRINT

20 PRINT "ANGLEM","ANGLE";TAB(20);"TAN(X)";

21 PRINT TAB(32);"ATAN(X)™,, "ATAN(X)"

25 PRINT "(DEGS)", "(RAD3)",,,"(RADS)",,"(DEGS)"
30 FOR X = 0 TO 45 STEP 15

35 PRINT

40 FOR X = 0 TO 75 STEP 15

50 Y = X%P/180 :

60 Z = TAN(Y)

70 PRINT X,Y;TAB(20);%;TAB(32);ATN(2Z);TAB(A8);ATN(2Z)*180/P

80 NEXT X
RUN
ANGLE AlIGLE TAN(X) ATAN(X) ATAN(X)
(DEGS) (RADS) (RADS) (DEGS)
0 0 0 0 0
15 .21799 267949 .261799 15
30 * .523593 S5T135 .523598 30
45 . 785398 .999999 .785398 N5
60 1.0472 1.73205 1.0472 60
75 1.309 3.73204 1.309 75

5.1.3 The Square Root Function; SQR(x)

This function dcrives the square root of any positive number as
shown below:

10 INPUT X
20 X = SQR(X)
30 PRINT X
40 GOTO 10
RUN
216
y
21000
31.6228
(LINEFEED) (RETURN)
READY

If the argument is negative, a CFferror will result.

-29-

5.1.4 The Exponential and Logarithmic Functions; EXP(x) and LOG(x)

The exponential function reises the number e to the power x. EXP
is the inverse of the LOG function. The relationship is:

LOG(EXP(X)) = X = EXP(LOG(X))

The following progran prints the exponential equivalent of an
input value.

10 INPUT X :

20 PRINT EXP(X), LOG(EXP(X)), EXP(LOG(x))
30 GOTO 10

RUN

287
6.0760 15E+37 87 87
?.0033)
1.00331 3.2999L-~03 3.3E-03
21
2.71828 -1 1

Logarithms to the base e may easily be converted to any other base
using the following fornmula:

where a represents the desircd hase and e = 2.71828. The followiqg
program illustrateés conversion to the bascs 10 and 2. £y

10 PRINT "VALUE","BASE E LOG","BASE 10 LOG","BASE 2 LOG"
20 INPUT X '

30 PRINT X,LOG(X);TAB(24);LOG(X)/LOG(10);

40 PRINT TAB(40);LOG(X)/LOG(2)

50 GOTO 20
RUN .
VALUE BASE E LOG BASE 10 LOG BASE 2 LOG
21
1 0 0 0

2

) 1.38629 .60206 2

210

10 2.30259 1 . 3.32193
21000 '

1000 6.90776 3 9.96579

An attempt to find the LOG of zecro or of a negative number causes a CF
error message.

5.1.5° The Absolute Valuec Function; ABS(x)

The ABS function returns the absolute value of any argument. The
absolute value is the argument itself with a positive sign. For
example the absolute valuc of both 3 and -3 is 3. The ABS function may
be illustrated as follows:

PRINT ABS(12.34),ARS(-23.65)
12.34 23.65 '

5.1.6 The Greatest Integer Function; INT(x)

‘The greatest integer function returns the valuc of the greatest
integer not greater than x. For example:

PRINT INT(34.67)
34

CPRINT INT(11)
11

The INT of a ncgative number is a negative number with the same or
larger absolute value, i.c., the same or smaller algebraic value, For
exanple: :

PRINT INT(-23.45)
=24

_ PRINT INT(-11)
-1

The INT function can be used to round numbers to the nearc!’:
integer, using INT(X+.5). For cxample:

PRINT INT(34.67+.5)
35

PRINT INT(-5.1+.5)
-5

INT(i) can also be uszed to round to any given decimal place or
integral power of 10, by using the following expression as an argument:

(X¥10°D+.5)/10"D

where D is an integer supplied by the user.

=3

D

10 REM INT FUNCTION EXAMPLE

15 PRINT

20 PRINT "NUMBER TO BE ROUNDED:"
25 INPUT A ;

40 PRINT "NO. OF DECIMAL PLACES:"
45 INPUT D

60 B = INT(A*10°D +.5)/10°D

70 PRINT "NUMBER ROUNDED = " ;B
80 GOTO 15

RUN

NUMBER TO BE ROUNDED
?55.65342

NO. OF DECIMAL PLACES:
22

NUMBER ROUNDED = 55.66

NUMBER TO BE ROUNDED
?78.375

NO. OF DECIMAL PLACES:
?-2

NUMBER ROUNDED = 100

NUMBER TO BE ROUHNDED
?67.38

NO. OF DECIMAL PLACES:
?2-1

NUMBER ROUNDED = 70

NUMBER TO BE ROUNDED _
?(LINEFEED) (RETURN) 2

READY
5.1.7 The Random llumber Function; RND(x)

The random number function produces a random number, or randomn
number set betwecn 0 and 1. The numbers are reproducible in the same
order after the ESC, L[sequence if X>0 for later checking of a
program. In DISK BASIC the form R!D without arguments is not 1legal.
For example:

10 PRINT "RANDO!M MNUMBERS:

30 FOR I = 1 TO &

40 PRINT RND(I),

50 MEXT I

RUN

RANDO!M NUMBERS: :
.100250 .966134 .8860657 .636444

.839019 .306121 .285553 ..285534

2

-32-

3

To obtain random digits from 0 to 9, line 40 can.be changed to read:
4o PRINT INT(10#*RND(1)),
This time the results will be printed as follows:

RANDOM HUMBERS:

8 9 3 5 6 1 8
2

It 1is possible to generate random numbers over a given range. If the
open range (A,B) is desired, use the expression: .

(B-A)#RHD(1)+A

to produce a random nuaber in the range A<n<B.
The following program produces a random number sct in the open
range (4,6). The extrecmes, 4 and G, arc never reached.

10 REM RANDOM MUNMBER SET IN OPEN RANGE 4,6,
20 FOR B = 1 TO 8 -

30 A = (6-4) * RND(1) + X

40 PRINT A,

50 NEXT B

RUN ;
4.20054 5.92962 5.77325 5.27288
4.99125 5.02420 4,18825 5.99989

Negative arguments, i.c. RND(-123), will start a new random number
sequence, while RND(0) will always generate the last random number.

5.1.8 The Sign Function; SGI(x)

The sign function returns the va;ue 1 if x is a positive number, 0
if x is 0 and -1 if x is negative. For example:

10 REM SGN FUNCTIOH EXAHPLE

20 READ 4,B,C

25 PRINT "A = "A,"D = "B,"C = "C
30 PRINT "SGH(A) = "SGM(A), "SGN(B) = "SGN(B),
40 PRINT "SGH(C) = "SGN(C)

50 DATA -7.32, .44, O

RUN
A= -7.32 B = .4}y C=0
SGN(A) = -1 SGH(B). = 1 SGH(C) = O

-33-

e

5.1.9 The Position Function; POS(x)

The POS function returns the current x coordinate of the cursor's
position. It is most often used to determine wvhether or not a
particular program result, either string or numeric, will fit on a
given line. By use of the POS(x) function, the correct placcment of
the answer can be casily determined.

5.2 User Defined Functions

In some programs it may be necessary to execute the same sequence
of statements or nmathematical formulas in several different places.
BASIC allows definition of uniques operations or expessluns and the
calling of these functions in the same way as the predefined standard
mathematiecal functions.

These user defined functions are described by a function name, the
first two letters of which are FN followed by any acceptable BASIC
variable name. For example: 7 -

Legal Illegal

FHA FNAS
FHAA ' FN2
FNA

Each function is defined once and the definition nay appear anywvhere in
the program. The defining or DLF statement is forned as follows:

" DEF FNA (argunent) = expressidn

where A is a variable name. The argumcnt must be a simple variable.
The expression may contain the argument variable and any other progra<
variables. For cxamplec: :
10 DEF FNA(S) = 372
causes a later statenment:
20 R = FNA(H)+1

to be evaluated as R = 17. As another cxample:

50 DEF FNB(A) = A+X"2
60 Y= FNB(14)

causes the function to be evaluated with the current value of the
variable X within the program. The two following progranms:

. =3~

%

10 DEF FNS(A) ATA 10 DEF FNS(X) = X"X

20 FOR I=1 TO S ‘ 20 FOR I=1 TO 5
30 PRINT I,.FNS(I) 30 PRINT I, FNS(I)
40 NEXT I 40 MEXT I

cause the same output:

RUN

1 1

2 4

3 27

4 256
5 3125

’

User defined functioné cannot have several arguments, as shown below:
©5 DEF FNL(x,Y,z) = SQR(X"2 + Y2 + 7272)

Such'a statement will cause an error of thc typc:
SN ERROR IN 25

When calling a user defined function, the parenthesized argument
can be any legal expression. The value of the expression is

- substituted for the argument variable. For example:

10 DEF FuZ(X) = X"2
20 A=2
30 PRINT FHZ(2+A)

Line 30 causes the result 16 to be printed,

If the same function name is defined nmore than once, then the last
defintion (the one with the higher line number) will be used. The
program below:

X"2
X+X

10 DEF FNX(X)
20 DEF FNX(X)
30 A=5'

40 PRINT FHNX(A)

will cause 10 to be printed.
The function variable need not appear in the function expression
as shown below:

10 DEF FHA (X) = 4+2
20 R=FHA(10)+1

30 PRINT R

RUN

7

5.3 BASIC String Functions

Like the intrinsic mathematical functions described above, BASIC
contains various functions for wuse with character strings. These
functions allow the program to concatenate two strings, access part of
a string, deterwmine the numbcer of characters in a string, generate a
character string corresponding to a given number or vice versa, and
perform other useful operations. The various functions available are
sumnarized in the following table.

STRING FUNCTIONS
Call Name Function

ASC(x$) Returns the eight bit internal ASCII code
(0-255) for thec one-character string. If the
arguient contains more than one character,
then the code for the first character in the
string is returned. A value of 0 is returned
if the argument is a null string (LEN(x3})=0).
(Scc ASCII codes in Appendix E).

L]

CHRS(x) Generates a one-character string having the
- ASCII value of x where x is a number greatecr
than or cqual to 0 and less than or equzl to

255. Only onc character cian be generated.

FRE(x5) Returns number of free string bytes. (3ce
CLEAR statcment in 3.11)
LEFTH(x%,I) . Returns left-most I characters of string
(%8). If I>LEN(x$), then x$ is returned.

LEN(x$) Returns the number of characters in the thea
: string x$%, with non-printing characters and
blanks being counted.

MID$(x$5,1I,J) J is optional. WUithout J, returns right-most
characters from x$ beginning with the Ith
character. If I>LEN(x$), WHIDS returns the
null string. With 3 arguments, it returns a
string of 1length J of characters from x$
beginning with the Ith character. If J is
greatcer than the number if characters in x$
to the right of I, MID$ returns the rest of
the string. Argument ranges: 0<I<=255,
0<=J<=255,

-36~

RIGHT3(x$,I) " Returns right-most I characters of string
' (x$). If I>LEN(x%), then x$ is returned.

STR$(x) Returns the string which represents the
' numeric value of x as it would be printed by
a PRINT statement.

VAL(x3) Returns the number representced by the string
x$. If the first character of x3 is not +,
-, or a digit, then the value 0 is returned.

In the above exauple, & and y$ rcpresent any legal string
expressions, and I and J represent any leral arithmetic expressions.

HOTE: Unlike the mathematical functions, character string
functions cannot be defined by the user. Similar results can be
obtained by the use of subroutines, as described in Scction 5.4.

5.4 Subroutines

A subroutinec is a section of a program performing some operation
required at mnore than one point in the programn. Sometimes a
complicated I/0 opcration for a volune of data, a mathematical
evaluation which is too coiplcx flor a user defined function, or any
number of other processes uiay be best performed in a subroutine.

Hore than one subroutine can be used in a single progrea, in which
case they arc best placcd one after the other in line number sequence
before the DATA statements. It is a wuseful practice to assign

"distinctive 1line numbers to subroutines. For examplc, if the main

program uses line numbers up to 199, use 200 and 300 as the first 1line
numbers of two °“subroutines. When subroutines -are- included in a
program, the program begins execution and ccntinues until it encounters
a GOSUB statcment of the form:

GOSUB line number

where the line number following the word GOSUB is that of the first
line of the subroutine. Control then transfers to that line of the
subroutine. For example: e

/50 GOSUB 200

Control is transferred to line 200 in the user program. The first line
in the subroutine can be a remark or any other valid BASIC statement.
Having rcached the line containing a GOSUB statement, control
transfers to the 1line indicated after GOSUB; the subroutine is
processed until BASIC cncounters a RETURN statement of the formn:

RETURN

which causes control to recturn to the statement following the original

GOSUR statenent. A subroutince wmust always be exited via a RETURHN
statement. 9
Beforec transferring to the subroutine, BASIC internally records

..37...

the next scquential staternent to be processed after the GOSUB
statement; the RETURN statement is a signal to transfer control to this
statement. In this way, no matter how many subroutines there are or
how mnany times they are called, BASIC always knows where to transfer.
control next. The following program demonstrates the use of GOSUB and
RETURN.

1 REM THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
10 DEF FNA(X) = ABS(INT(X))
20 INPUT A,DB,C
30 GOSsUB 100
§Oo A=FNA(A)
50 B=FNA(B)
60 C=TFNA(C)
70 PRINT
80 GOSUE 100
90 END
100 REM THIS SUDROUTINE PRINTS OUT THE SOLUTIONS
110 REM OF THE EQUATION: AX"2 + BX + C = 0
120 PRINT “THE EQUATION IS "A "#X"2 + " DBW&X + "C
130 D=B¥*B -~4#A%C
1410 IF D<>0 THEN 200
150 PRINT"ONLY OHII SOLUTION...X "; =B/(2#A)
160 RETURN .
170 IF DO THEN 200 -
180 PRINT "TWO SOLUTIONS...X=";
185 PRINT (-B+SQR(D))/(2*A); ") AND ("; (~-DB-SQR(D))/(2%A)
190 RETURR
200 PRINT "IMAGINARY SOLUTIONS...X =(";
205 PRIUT -B/(2%A) "," SQR(-D)/(2#A) *) AuND (“;
207 PRINT -B/(2%A) ", "; ~SQR(=D)/(2%a) ")n
210 RETURN
900 END
S
Subroutines can be nested; that is, one subroutine can call
another subroutine. If the execution of a subroutine encounters a
RETURH statement, it returns control to the statement following the
GOSUB which called that subroutine. Therefore, a subroutine can call
another subroutine, even itself. Subroutines can be entered at any
point and can have more than one RETURN statement. It is possible to
transfer to the beginning or any part of a subroutine; multiple entry
points and RETURHN's make a subroutine mnore versatile.

-38-

3

5.5 The ON GOTO and ON GOSUB- Statcrnents

The ON...GOTO statenent provides another type of conditional
branching. Its form is as follows:

Ol expression GOTO 1line number list

After the value of the expression is truncated to an integer in the
range 0-255, say I, thc statement causes BASIC to branch to the 1line
whose number is Ith in the list. If I=0 or is greater than the number
of lines in the list, cxccution will continue at the next 1line after
the ON...GOTO statement. If I is less than 0 or greater than 255, a CF
error will result. For example, the following sequence of IF
statements can be replaced by a single ON...GOTO statement. Thus;

Joo IF X=1 THEN 1000
110 IF ¥=2 TIEN 2000
120 IF X=3 THEM 3000
130 IF X=4 THEY 4000
140 IF X=6 THEN 6000
150 ¥=10

can be replaced by:

100 01 X GOTO 1000, 2000, 3000, 4000, 150, 6000
150 ¥=10

Note that there was no IF statement for X=5, so in the OH...GOTO
statement the corresponding line number is 150, which is the next line.

Subroutines may be called conditionally by use of the ON...GOSUR
statement. Its form is as follows:

Ol expression GOSUB 1linc number 1list

The execution is the same as Oll...GOTO except that the linc numbers are
those of the first lines of subroutines. Execution continues at the
next statement after the ON...GOSUB wupon return from one of the
subroutines. : .

Note that OW...GOTO and OMN...GOSUB statements do not have to be
the last executable statements on a line.

-39~

3

6. ARRAYS

6.1 Introduction to Arrays

Arrays or subscripted variables are most frequently used for
storing lists of information in a progrem using a single name to refer
to the 1list as a wholec and using subscripts to refer to individual
items. For cxample, conszider the following 1list of 12 numbers
corresponding to the number of days in each nionth in a non-leap yecar:

31, 26, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

The notion of subscripts follows naturally. For instance, the 5th iten
in the 1list corresponds to the nunber of days in llay. Using an array
(list) of size 12, named !, to refer to all the cntries in the list as
a uhole, the fifth itcm of M can be sinply denoted as M(5). Similarly,
the number of days in February is denoted by 11(2). If the number of
days in the Ith month is desired, then M(I) contains that value.

In the following example, the data values are read into an array

which is dimensioned to size 12 in line 10. (Scc Section 6.4)

10 DIM ti(12)

20 FOR I=1 TO 12: READ M(I): MEXT I

30 DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
35 REM PRINT THF NUMBER OF THE MOHTH AHD DAYS IN EACH MONTH
36 REM ADD UP THE NUMBER OF DAYS IN THE MONTHS

o D=0

50 FOR I=1 TO 12

60 PRINT I, M(I)

T0 D=D+!{(I)

80 NEXT I

90 PRINT "TOTAL DAYS =", D

The resulting output from this progran is:

.RUN

1 31

2 28

3 31

Y 30

5 31

6 30

(] 31

8 31

9 30

10 31 N

1 30

12 31 ’
TOTAL DAYS = 365

-40-~

'_/.

If the above program werc e¥panded past'line 90 the values in M would
be accessible at any point during the cxecution of the program unless
they were changed by an assignment or input statement.

6.2 Subscripted Variables

The name of a subscripted variable iz any acceptable BASIC
variable name followed by one or riore intager expressions in
parcntheses within the range 0 - 32767. Subscriptcd variablc names
follow the same naming conventions as simple variables with the first 2
characters becing significant. For exazumple, a list might be described
as A(I), where I goes from 0 to 5 as shown-belou:

A(0),AC1),A(2),A(3),A(H4),A(5)
This allows rcference to cach of the six elements in the list, and can
be considered a one dinensional aljicbraic matrix as follows:

A(0)
A(1)
A(2)
A(3)
A(Y)
A(5)

A tvo-dinmensional matrix B (I,J) cun be defined in a similar manner:
. B(0,0),8B(0,1),R(0,2),...,0(0,d),...B(I,J)
and graphically i}lustrated as follows:

B(0,0) B(0,1) ... B0,
B(1,0) B(1,1) ... R(1,J)

. - .

B(I:O) B(I:U B(I:J)

Higher dimensional arrays can also be formed. The upper limit is
determined by the size of the input buffer giving a practical limit of
40. ' '

Subscripts used with subscripted variables throughout a program
can be e¢xplicitly stated or they can be any legal expression. If the
value of the expression is non-integer, the value is truncated so that
the subscript is an integer.

It is possible to usc the same variable name as both a subscripted
and unsubscripted variable. Both A and A(I) are valid variables and
can be used in the same program. The variable A has no relationship to
any element of the matriz A(I). Subscripted arrays of character
strings may also be defined, and their variable names are distinct.
A$(I) bears no relation to A(I) or A.

?

-1~

B

A dimension (DIM) statenent is used with subscripted variables to
define the waximum number of elements in a matrix.

If a subscripted variable is wused without appearing in a DIH
statement, it is assuiced Lo be dimensioned to 1length 10 in each
dimension (that is, havinz cleven elcnents in each dimension, 0 through
10). lHlowever, all matrices should be correctly dimensioned in a
program.

6.3 Subscripted String Variables

Any list or matrix variable nanme followed by the §$ character
denotes the string form of' that variable. Tor example: e
V3(n) Hz25(n)
‘¢4 (m, n) G15(n1,n)

wherc m and n indicate the position of the matrix element within the
whole.

The same name can be used as a nuneric variable and as a string
variabie in the same progras with no restriction. Simple variables and
dimensioned variables can also have the same name. TFor example:

A A(n)
AS As(u,n)

can all be used in the sanme progran; houever, A(n,m) could not be used,
because it redefines the size of A(n).,

String 1lists and matrices are defined with the DIM stztement as
are numerical lists and matriccs.

6.4 The DIM Statcnent

The DIIi statement i3 used to define the maximum number of clements
in a matrix. The DIM statciient is of the form:

DIl variable(n), variable(n,m), variable$(n), variable$(n,m)

where variables specified are indicated with their maximum subscript
valuc(s).. For e:umple: ' ‘

10 DI X(5),Y(4,2), A(10,10)
12 DIM A4(100), £$(25)

Arrays can be dynamically dinmensioned by using numeric expressions
instead of integer constants to dcfine the size of an array. Any
nurber of matrices can be defined in a single DIM statement as long as
they are scparated by conmas.

The first clement of cvery matrix is automatically assumed to have
a subscript of =zero. Dimensioning A(6,10) sets up room for a matrix

with 7 rows and 11 columns. This zero element is illustrated in the
following program: o

42

10 REM MATRIX CHECK’ PROGRAM
20 DIM A(6,4%)

30 FOR I=0 TO 6

N A(I,0) = I

50 FOR J=0 TO 4

60 A(0,d) =J

70 PRINT A(I,J);

80 NEXT J:PRINT:NEXT I

90 END

RUN
01231}
10000
20000
30000
40000

50000
60000

Hotice that a variable has a value ef zero until it is assigned
another value. :

llhenever an array is dimensioned (m,n), the matrix is- allocated
with (m+1,n+1) clenents. lemory space can be conscerved by using the
Oth element of the matrix. For example, DIl A(5,9) dimensions a 6 * 10
nartriz which would then be refcrenced beginning with the A(0,0)
clement.

_The size and number of matrices which can be defined depend upon
the amount of storage space available. .

A DIM statement can be placed anywhere in a multiple statenent
line and can appear anywhcrce in the program. A matrix can only be
dimensioned once. DIM stateiments must appear prior to the first
reference to an* array. DIM statements are generally aniong the first
statements of a program to allow them to be easily found if any
altcrations are later required.

All arrays specified in DIM statecments are allocated space when
the DIM statement is executed. All other zrrays are declared at the
first reference executed.

-43-

D

7. FURTHER SOPHISTICATION

7.1 Formatting the Printout

Often, the purpose of a program will require that results be
printed out in a particular format, rather than simply in a 1list or
line at the end of a program run. BASIC provides certain facilities
for use in formatting the printout, so that the desired result can be
achieved.

When a comma separates a text string from another PRINT list item,
the item'is printed at the beginning of the next available print zone.
Semicolons separating text strings from other items are ignored. The
screen 1is divided into 8 print zones of 8 characters each. A comma or
semicolon appearing as the last item of a PRINT list always suppresses
the carriage return/line fced operation. BASIC does an automatic

carriage return/line feed if a string is printed past column 64.
Examples of the use of comma include:

10 A=3
20 B=2
30 PRINT A,B,A+B,A%B,A-B,B-A

When the preceding lines are executed, the computer will print:
3 , 2 5 6 . 1 -1

Notice that each character is eight spaces from the next character.

Two commas together in a PRINT statement cause a print zone to be
skipped, as in:

10 A=1
20 B=2
30 PRINT A,B,,A+B
RUN
1 2 3

READY

If the last item in a PRINT statement is followed by a comma, no
carriage return/linefeed is output, and the next value to be printed

(by a later PRINT statement) appears in the next available print zone.
For example:

4=

e

N

10 A=1:B=2:C=3
20 PRINT A, :PRINT B: PRINT C
RUN _

1 2

3
READY

If a tighter packing of printed values is desired, the semicolon
can be used in place of the comma. A semicolon causes no spaces to be
output otherr than the 1leading space automatically output with each
non-negative number., A comina causces the cursor to move at 1least one
space to the next print zone or perform a carriage return/line feed if
the string prints past column 64. The following example shows the
effects of the semicolon and comma,

10 A=1:B=2:C
20 PRINT A;B
30 PRINT A+1
40 PRINT A,B
RUN

1232314

1 2 3
READY

=3

HoH
;B+1;C+1
,C

The following example demonstrates the use of the formatting
characters , and ; with text strings:

120 PRINT "STUDENT"X; " GRADE ="G;" AVG. ="A;
130 PRINT " NO. IN CLASS ="N

Assuming that calculations had becn done prior to these lines, the
following would résult: -

STUDENT 119050 GRADE = 87 AVG. = 85.44 NO. IN CLASS = 26
7.1.1 The Tabulator Function; TAB(x)

The TAB function is used in a PRINT statemént to write spaces to
the specified celomn on the output device. The columns on the screen
are. numbered 1 to 64. The form of the command is:

_PRINT TAB(x)

where (x) is the column number in the range 0 - 255. (If x exceeds 61,
however, every other .consecutive 1line is tabbed until the number of
specified spaces are printed. If (x) is greater than 255 or negative,
an error message is printed as follows: '

CF ERROR
READY

If (x) is non-integer, only the integer portion of the number is used.
If the column number (x) specified is less than or equal to the current
column number, the TAB function has no effect.

= 5w

T.1.2 The Space Function; SPC(x)

The SPC function'can'be used in much the same fashion as TAB 1in
PRINT statements. This function prints the number of spaces indicated
by (x) which must be in the range 0-255; otherwise a CF error results.,

Note that if either a TAB(x) or SPC(x) is the last item in a print
list the carrige return/line feed is suppressed. :

. 7.2 Immediate Mode and Debugging

Immediate mode operation is especially useful for program
debugging (error removal), and performing simple calculations in
situations which do not occur with sufficient frequency or with
sufficient complication to justify writing a program.

In qrder to facilitate debugging a program, END statements can be
liberally placed throughout the program. Each END statement causes
the program to halt, at which time the various data values can be
examined and perhaps changed in immediate mode. The command:

GOTO xxxxx

is used to continue program execution (where xxxxx is the nunber of the
next program line to be executed), GOSUB and IF commands can also be
used. The values assigned to the variables when the RUN command is
executed remain intact until a CLEAR statement or another RUN command
is executed.

When using immediate mode, nearly all of the standard statements
can be used to generate or print results.

If LINEFEED is used to halt program execution, the GOTO xxxx or
CONT command can be used to continue execution. Since CTRL/J or
LINEFEED does print the number of the line where execution stopped, it
is easy to know where to resume the program. Note that if a BASIC
program statement is entered or altered, it is not possible to continue
execution.

T.2.1 Restrictions on Immediate Mode

The INPUT and DEF statements cannot be used in immediate mod¢ and
such use results in the following error message:

* ID ERROR
READY

Certain other commands, while not illegal, make no logical sense
when used in immediate mode. Commands in this category are DIM and
DATA.

Although the standard mathematical functions are permissible, user
functions are not defined until the program is executed, and therefore
any references to user defined functions in immediate mode cause an

error unless the program containing the definition was previously
executed,

U6

Thus, the following dialogue might result if a function were
defined in a user program and then referenced in immediate mode.

10 DEF FNA(X) = X"2 + 2%X:REM SAVED STATEMENT
PRINT FNA(1):REM IMMEDIATE MODE

UF ERROR
READY

but if the sequence of statements were:

10 DEF FNA(X) = X"2+2#X:REM SAVED STATEMENT
RUN '

READY

‘PRINT FNA(1)
3

READY

the immediate mode statement would be executed.

7.3 Machine Level Interfaces with DISK BASIC

DISK BASIC has several fcatures that allow the user access to the
machine level input/output of the microprocessor. By wusing the WAIT
and ouT statements and the INP function, various input/output
operations can be performed. Other machine dependent features allow
access to the memory and assembly language subprograms, (Sece
Appendices D.1 and D.2 for Key Memory Locations and Port Assignments.)

7.3.1 The WAIT Statement

The status of memory ports can be monitored by the WAIT statement
which has the following forms:

WAIT I,J
WAIT I,J,K

where I ,is the number of the port being monitored, and J and K are
integer expressions. The port status is exclusive OR'ed with K 1if
present and the result is AND'ed with J. FExecution is suspended until
a non-zero value results. In other words, J picks the bits of port I
to be tested and execution resumes at the next statement after the
WAIT. If K is omitted, it is assumed to be zero. I, J, and K must be
in the range 0 to 255; otherwise, a CF error results.

~47-

T.3.2 The OUT Statement
The form of the OUT statement is as follows:
ouT I1,J

where I and J are integer expressions in the range 0 to 255. OUT sends
the 8 bit quantity (byte) signified by J to output port I.

WARNING: If bytes are output to ports on the SMC 5027 CRT chip,
serious damage can result to the COMPUCOLOR II. (Sce Appendix D.2)

T7.3.3 The Input Function; INP(x)

The INP function is the counterpart of the OUT statement. Its
form is as follows:

L)

X = INP(I)

~

INP reads a byte (8 bit quantity) from port I where I is an integer
- expression in the range 0 to 255.

7.3.4 The Peek Function; PEEK(x)

The PEEK Function is called as follaws:

J = PEEK(I)

whereé J is the integer value returned in the range 0-255 that is to be
stored in the memory location specified by the integer expression I.
The range of I is -32768 to 65535. If I is negative, then the address
is 65536+I; and if I is positive, the address is I.
7.3.5 The POKE Statement

The form of the POKE statement is as follows:

POKE I,J

where J 1s an integer expression in the range 0 to 255 that is to be
stored in the memory location specified by the integer expression 1I.
The range of I is -32768 to 65535. If I is negative, then the address
is 65536+I; and if I is positive, the address is I.

7.3.6 The User Call Function; CALL(x)
The CALL function is used for interfacing with 8080 machine
language subroutines. The function can be used in the same manner as

the other mathematical functions. The form is as follows:

Y = CALL(x)

where the assignment x must be in the range -32768 to 65535, The value
Y returned is in the range -32768to 32767.

48—

o

The CALL function converts the argument into a 2 byte integer and
stores the result in the 8080's D and E registers (D contains the high
byte, E the low byte.) The BASIC interpreter .then executes an 8080
CALL instruction to location 33282 (8202 HEX), which, unless modifed by
the user, contains a jump to the CF ERROR message routine. The user
must modify the locations 33282 through 33284 so that they contain a
JMP to the desired machine language routine. Upon return, the 2 byte
integer in the D,E registers is converted back into floating point
format. The stack level must be preserved at the same point at which
the user entered the CALL, and the H and L registers must be preserved.
All other 8080 registers can be modified,

For example, consider the

following assembly .language subroutine

which negates the contents of the D and E registers.

ORG 08202 ;33282
JHP NEGATE
ORG 09FFOH ;4094)
NEGATE: MOV A,D s COMPLEMENT
CMA s [1IGH
MOV D,A s BYTE &
MOV AE s COMPLEMENT
CHA s LOW
MOV E,A s BYTE
INX D s INCREMENT AND FORM 2'S COMPLEMENT

RET

; RETURN - HL UNCHANGED

This subroutine could be assembled using the COMPUCOLOR II Assembler or
"hand" asscmbled and entcred using the POKE statement in BASIC.

To enter this subroutine in BASIC, the user must first hit CPU
RESET then re-enter DASIC by using thce ESCAPE W sequence. The number
8176 must be entered in response to the MAXIMUM RAM AVAILABLE prompt.
This leaves 16 bytes free for the machine language subroutine. The

following program loads

the machine

language subroutine and

demonstrates the CALL function.

5 REM CHANGE JUMP ADDRESS AT 8203-4 HEX, 8202H CONTAINS JUMP

10 POKE 33283, 240
15 REM PROGRAM BYTES
20 DATA 122, u7, 87,
30 FOR AD = 40944 TO
. 40 READ VL: POKE AD,
50 NEXT AD
100 INPUT "ENTER X "
110 PRINT "-X = ";Y

7.4 String Space Allocation

: POKE 33284, 159

AT 9FFO HEX

123!)"7’ 95’ 19, 201
40951

VL

+X ¢ Y=CALL(X)
: GOTO 100

Understanding how the string space is wused is important in
deciding how much string space 1is necessary for the execution of a
program. First, all strings entered in immediate mode or by the INPUT
statement (sece Section 4.1) are allocated in the string space because
the input line buffer can be modifed by subscquent inputs.

-49-

String functions and the string concatenation operator "+" always
return their results in the string space. Assigning a string a
constant value in a program through a READ or assignment statement does
not use any string space since the string value is part of the program
itself, In general, copying is done when a string value is in the
input line buffer, or it is in the string space and there is an active
reference to it by a string variable. Thus, A$ = B$ will cause copying
if B$ has its string data in the string space. The assignment A$ =
STR$(105) (sece Section 5.3 for STR$) will use four bytes of string
space to -store the new four character string, " 105", created by the
STR$ function, but the assignment itself does not cause copying since
the only reference to the new string was created as a temporary
reference by the formula evaluator. The temporary references disappear
when the assignment is done. The copying is done in this manner
because the string garbage collection does not allow two references to
the same area in the string space.

-50-

8. DISK FEATURES

8.1 Loading and Saving Programs

Programs and data can be loaded and saved on the COMPUCOLOR II so
that they can be stored and used, edited, or updated in the future.
The general forms of the LOAD and SAVE statements are:

LOAD string expresosion

SAVE string expression o
where the string can be a string variable such as A% or a quoted
literal string such as "NAME"., There are three FILE types that can be
loaded and saved. They are BASIC source (BAS), numeric ARRAYS (ARY),
and memory DATA (DAT). If no file type is specified, then the default
type 1is BAS, The BAS file type can be in the form as shown below.
Each of the following examples will save the same BASIC source,

SAVE "TEST" :REM SAVES BASIC SOURCE WITH NAME TEST ON DISK
SAVE "TEST.BAS"

SAVE "TEST.BAS; 1"

SAVE A$: REM WHERE A$ IS A STRING VARIABLE

SAVE "CD1:" + A$: REM WHERE "CD1:" SPECIFIES OPTIONAL DISK

Eéch of the following examples will cause a BASIC source program to be
loaded. :

LOAD "TEST:REM LOADS A BASIC SOURCE PROGRAM BY NAMING OF TEST
LOAD "TEST": PROGRAMS ARE SAVED Ol THE COMPUCOLOR DISK

LOAD "TEST.BAS"

LOAD "TEST.BAS;1"

LOAD "CD1:" + A%: REM WHERE "CD1:" SPECIFIES THE SECOMND DISK
LOAD A$:REM WHERE A$ IS A STRING VARIABLE '

The ARY file type can be in the same form as BAS except that ARY must
be in the string after the file name. Also the file name must be a
dimensioned or previously used array by the same first two letters of
the file name. If a one letter variable name is used, then the file
name must be that letter only.

10 DIM ST (100,10),T(3),TT(11,15,38)
20 SAVE "STEST.ARY"

30 SAVE "T.ARY;1"

40 END

The abové program will save the numbered arrays ST and T. The following
program will cause a (100,10) array to be loaded even though it was
originally set at 1200, since 1200 > 101 # 11,

~51= .

10 DIM ST (1200)
20 LOAD "STEST.ARY": REM DIM ST (100,10)
30 END .

The DAT file type can be in the same form as ARY. It will look at
the two-byte integer stored in locations 32940 and 32941 (32940 1low
byte and 32941 high byte) as a pointer to memory. It adds 1 to this
pointer and takes the next two bytes in nemory as the number of bytes
to be 1loaded into memory or saved on disk. The locations 32940 and
32941 specify the end of BASIC memory space, so all memory above that
location can be wused to save data via BASIC using the POKE command.
Also note that only one DAT file may be read in at any one time without
changing the pointers at 32940 and 32941.

Note that it is recommended that programs use the random file
capability of DISK BASIC instead of loading and saving DAT files.

8.1.1 Program Chaining

A series of different programs can be executed as a single program
by wusing a technique commonly known as program chaining. In DISK
BASIC, two types of program chaining are possible. The first and
casiest mnethod uses the LOAD statement in combination with the RUN
comnand as follows:

LOAD"PROGRM" : RUN

Executing this statement in either a program or immediate mode causes
the specified BASIC program to be loaded and executed. The RUH comirand
clears all the variables from the previous program. A line number can
optionally be specified on the RUN command.

The second nethod used the LOAD statement in combination with the
GOTO statement as follows:

LOAD"PROGRM":GOTO line number

Executing this statement in a program causes the specified program to
be loaded and executed starting at the specified 1line number in the
GOTO command. This method does not clear the variables from the
previous program; however, two restrictions must be satisfied to ensure
proper exection of the program. First, the program with the 1largest
source in the chain must be loaded and executed first. Second, string
variables whose data values where part of the program source will
contain in correct references when subsequent program is listed because
the program source will not be the same as the previous program. If
these restrictions are satisfied, then the series of programs should
execute properly. Clearly, this second method of program chaining is
the least desirable because of the possible difficulties. See Section

7.4 for a description of how strings are allocated before using this
method.

»
-52-

8.2 Using the File Control System Through BASIC

The PRINT STRING command preceded by PLOT 27 and PLOT 4 or PLOT 68
(ESC,D for FCS DISK) will enable the user to exercise all of the FCS
disk commands through BASIC. Therefore, cvery command available to the
File Control System is also available to BASIC, by letting the string
become the FCS command. The following examples show how to retrieve a
disk directory through BASIC.

10 PLOT 27,4
20 PRINT "DIR"
40 END

or
10 PLOT 27 :PRINT"DDIR"

or .
10 PLOT 27:PLOT 68:PRINT A$:REM WHERE A$ IS A
20 REM STRING VARIABLE EQUAL TO DIR.

If the directory of the disk were as follows:

TEST.ARY;01
TEST.ARY; 02

then the BASIC program below would delete version 1 of the TEST.ARY

file, rename version 2 to vcrsion 1, update the array, and save it as
version 2 so it can be used again.

5 DIM TEST(1000)

10 LOAD “TEST.ARY;2"

20 PLOT*27:PLOTH:REM SELECT FCS MODE

30 PRINT “DELETE TEST.ARY;1"

50 PRINT "RENAME TEST.ARY;2 TO TEST.ARY1"

60 PLOT 27:PLOT 27:REM SELECT VISIBLE CURSOR MODE
80 :REM UPDATE TEST ARRAY

90 SAVE "TEST.ARY"

All string functions that are available to BASIC can be used in the
PRINT statement containing the FCS command.

To escape from the File Control System and return to one of the
other CRT modes, an escapc sequence must be given; such as ESC,ESC for
visible CRT cursor mode. The FCS responds only to printing ASCII
characters and the following control codes:

1 ERASE LINE

13 CARRIAGE RETURN
26 CURSOR LEFT

27 ESCAPE

All other control codes will cause an FCS error if they gppéar in a
string. A complete description of the FCS conmnmands appears in Chapter
10 and Appendix B.1. '

&

253

8.3 Introductiorn to Random Files

COMPUCOLOR DISK BASIC has three statements which implement a
powerful random access file capability. The FILE statement performs
various functions including creating, opening and closing random files.
The GET and PUT statements read, write, and update records in a random
file. .

Random files are organized into physical blocks containing a fixed
number of fixed length records. If a physical block is not a multiple
of 128, then the excess length up to the next multiple of 128 is not
used. The blocking factor and record size of a file can be changed to
allow different types of access. For exanple, a 100 record file of 80
byte records with a blocking factor of 3 will use only the first 240
bytes of 256 available in 2 disk sectors. The last 16 bytes are unused.
Logical records do not cross phvsical block boundaries. Thus, for the
100 record file 2*¥34=68 sectors are needed. In this case a 102 record
file could‘have becn allocated in the same amount of disk space.

There can be up to 127 random files open simultaneously subject to
memory limitations. Memory space for files is allocated dynamically
from the user's workspace. Fach file can contain from 1 to 32767
records and the record size range is 1 to 32767 bytes. The record size
must be small enough to fit into the wuser's workspace giving a
practical maximum of 30000 bytes.

8.4 The FILE Statement
The basic form of the FILE statement is:
FILE "string cxpression", cxtra information

The FILE statement is a versatile statement that has the ability to
perform a number of functions. The [first character of the string
expression determines what the FILE statement will do. The following
sections describe the FILE statement's uses and functions.

8.4.1 Random File Creation
The Random File Creation statement is of the form:
FILE "N", filename, records, record size, blocking factor

where 'filename' 1is a string expression containing a valid FCS
filename; 'records! is the number of logical records (1-32767); 'record
size' is the size in bytes of logical records (1-32767); and 'blocking-
factor' is the number of logical records per physical block (1-255).

The specified file must not exist. If no version number is
specified, then FCS will choose the next larger version number, The
user is responsible for choosing proper values of the parameters. Any
of the file specifications can be overridden when the file is opened
with the FILE "R" statement. For example:

“Su" , . N

FILE "N", "CHECKS", 200, 32, 8
creates a file containing 206 32-byte records with 8 records per block.
8.4.2 Random File Opén |
The form of the Random File Open statement is:

FILE "R",file,namec,buffers{;records,rec size,blocking factor>

where 'file' is the logical number of the file (1-127), 'name' is a
string expression containing a valid FCS filcname, and 'buffers' is t!:
number of buffers in memory (1-255). ~

The items between the anglc brackets are optional and redefine the
file size. The elenents are: 'records', which is the number of logical
records (1-32767); 'rec size', which is the size in bytes of 1logical
records (1-32767); and 'blocking factor', which is the number of
logical rccords per physical block (1-255).

The specified file must already exist., It is possible to open any
type of file, but they are best created with the FILE "H" statement.
Files not created in BASIC can be accessed by overriding the number of
records, the record size, and the blocking factor, but the directory
will not contain valid information about the number of records, record
size, or blocking factor. For example:

FILE "R",1 ’"CHECKS" y 2

opens the file "CHECKS.RND"™ and allocates enough buffer space for 2
physical blocks or 16 records.

8.4.3 Random File Close

The Random File Cloée statement is of the form:

FILE "C", file 1 <,...,file N>

where 'file' is the number of the file to be closed. The items between
the angle brackets are optional, and merely describe the format for
closing more than one file at a time.

Each file that has been opencd must be closed to ensure that the
buffers in memory are written to the disk if they have been modified.
Closing a file frees up its buffer space in memory. For example:

FILE "C", 1

closes file 1.

8.4.4 Dump File Buffers
The form of the Dump File Buffers statement is:
FILE "D", file 1 ¢,...,file N>

where 'file' is the number of the file (1-127); and the optional items
between the angle brackets are other files that can be included in the
same statement.

This statcment writes any modified buffers to the disk for the
specified files. It can be used to ensure that modifications to a file
are recorded immediately. Jt is similar to FILE "C" except that the
buffer space is not freed up and the file remains open. For example:

FILE "D",L4,6
writes any modified buffers back to the disk for files 4 and 6.
8.4.5 File Attributes
The form of the File Attributes statement is:
FILE "A",file,cur record ¢{,records,rec size,blocking factor>

where 'file!' is the number of the file (1-127); and 'cur record' is the
variable that is assigned the most recently accessed record number.
The items between the angle brackets are optional and include
'records', which is the variable that is assigned the number of records
in the file; 'rec size', which is the variable that 1is assigned the
record size in Dbytes; and 'blocking factor', which is the number of
logical records per physical block (1-255).

This statement is used when the file size and other attrlbutes of

a file are unknown. For ecxanmple, the attributes of file 1 may be
determined as follows:

FILE "A", 1, CR, NR, RS, BF

8.4.6 File Error Trapping
The form of the File Error Trapping statement is:
" FILE "T" <,line number>

where the optional line number is a line number in the range 0 to
65529.

N

If the file "T" statement 1is cxecuted with the line number
specified, then when a disk “error occurs it will be trapped and
execution will continue at the specified line number. All information
about nested GOSUB's and FOR-NEXT loops will be lost. In most cases
this will not be a problem, In the other cases, assuming good
programning practices, the disk error will probably be a hardware
failure which requires some type of special recovery -procedure, If
the line number is not spccified, then the error trapping facility will
be disabled. For example:

FILE "T",32000
causes the program to go to linec 32000 whenever a disk error occurs.,
8.4.7 File Error Dcterminaticn
The form of the File Error Determination statement is:
FILE "E", file, error, linc number

where 'file' is the file number at the time of the error (this number
may be incorrecct for bad file name errors and ecrrors within the FILE
"N" statement); 'error' is the disk error nuuber (for explanations see
Appendix A.6); and 'line number'! is the line number in which the error
occurred.

This statement lets the user determine what type of disk error

occurred. It is used in conjunction with the FILE "T" statement. For
cxample:

FILE "E", FL, ER, LN
returns the file,+error, and line number of the current random file
error.
8.5 The GET Statement
The GET stztement is of the form:
GET file <,record <{,first>> ; variable list

where ‘'file' is the 1logical file nuwber (1-127); and the 'variable
list' contains one or more of the following entries:

numeric variable - reads 4 bytes into the numeric variable;

string variable [byte count] - reads the specified number of
bytes into the string variable. The byte count range
is 1 to 255.

The items between the angle brackets are optional and include 'record’,
which is the record number to be rcad (if O or omitted, then the record
nunber is 1 greater than that used for the last access to the file);
and 'first', which is the first bytec of the rcecord to be read (1-record
size). If no value is given for g'first', then first defaults to 1.

=o0=.

The GET statement allows a file to be randomly accessed. Ry using

the first field, different -parts of the record can be immediately
accessed. For example:

GET 1,R;ACCOUNT, AMOUNT, DATE, PAYEE$[20]

will read ACCOUNT, AMOUNT, and DATE as nunmeric entries, .and PAYEE as a
20 byte string.

8.6 The PUT Statement
The PUT statement is of the form:
PUT file <,record <, first>> ; expression list

where 'file' is the logical file number (1-127); and the ‘'expression
list' contains 1 or more of the following entries:

numeric expression - writes 4 bytes containing the value of
the expression;

string expression [byte count] - writes the specified number
of bytes. The value of the string expression is
truncated or blank filled on the right. The byte
count range is 1-255.

Items between the angle brackets are optional and include: ‘record!',
which is the record number to be written or updated (if 0 or omitted,
then the rccord number is 1 greater than that used for the last access
to the file); and 'first', which is the first byte of record to be

written (1-record size). If no value is given, then first defaults to
1. -

The PUT statement allows random records to be written or updated.
For example:

PUT,1,R,13; "HMORTGAGE COMPANY"{20]

updates 20 bytes of record R starting at the 13th byte.

~

8.7 Improving File Access

The ' random files in DISK BASIC arc oriented towards fast random
reads and updates. Sequential file input and output can easily be
simulated; however, therc is a time pcnalty for sequential output
because the PUT statement updates information on a record. The file

accessing tine in a program can often be greatly reduced if the program
takes advantage of the flexibility offered.

The file accessing scheme in DISK BASIC is different from the
random accessing scheme commonly used in most microcowputers. When a

-58-

record is accessed that is not present in one of the buffers in memory,
the physical block containing the logical record is read into memory in
an unused buffer or, if all buffers are in use, the least recently used
(LRU) buffer. If the most reccently used buffer has been modified, it
is rewritten to disk before the next block is read into the buffer.
This type of a buffer management scheme is very similar to the LRU
virtual ‘memory paging schemes used on large computers.

The first method of improving file access is increasing the number
of file buffers allocated in the FILE "R" statement. Changing this
number from 1 to a larger number does not alter the results of
execution; it only altcers the number of times the disk has to be
physically accessed. The difference in time can be quite substantial.
However, for scequential access or random access which uniformly
accesses all parts of a large file there is 1little advantage to be
gained by increasing the number of buffers beyond 1.

The second method of improving file access is varying the record
size and blocking factor of a file. Ideally, the record size should be
a power of 2. By choosing an appropriate blocking factor the block
size will be a multiple of 128. For cxample, a 32 byte record can be
blocked 4, 8, or 12, giving block sizes of 128, 256, or 384 bytes,
respectively. For sequential access a blocking factor of 1 allocates 1
record to a physical block. Thus, to read rccords sequentially, 1
physical access and disk read is necessary for each record. With a
blocking factor of 8, physical disk access is only necesary for every 8
records read, vwhich is 1/8 as many disk accesses as necessitated by a
blocking factor of 1.

If the reccord siZes are not a power of two, the blocking factor
should be chosen carefully. For c¢xample, with 80 byte records a
blocking factor of 1 will waste 48 bytes of disk space for each record
because -the 80 byte record is contained in a 128 byte disk sector. By
using a blocking factor of 3, only 16 bytes (256-3#80) will be wasted
for every 2 128 byte sectors. Again, with a blocking factor of 8, 640
bytes are used with no wasted space because 5 disk sectors hold exactly
640 bytes. Whether or not to choose 1, 3, or 8 should be determined by
the type of application for which the file is used., If the program is
large and usecs most of the workspace, either 1 or 3 would be best., If
the program is small, allocating 678 (3M+4+640) bytes may be quite
acceptable and improve the speed of the program. Choosing the best
values for the number of buffers, record size, and blocking factor is
often difficult. The user is following a reasonable guideline if he
allocates 1 buffer for sequential files with a larger blocking factor
and more buffers with smaller blocking factors for random files. For
often used applications a little experimentation and fine tuning of the
parameters can improve the disk access tine.

-59-

8.8 Storage Requirements

When random files are used, they are allocated from the user's
free workspace. The storage requirements in bytes are as follows:

error trapping - 10 bytes
open files -
4+30+BUF*(4+128*%INT((RECSIZ#BLKFAC+127)/128)) bytes

where

BUF = the number of allocated physical block buffers,
RECSIZ = the number of bytes per record,
BLKFAC = the number of records per block.

Thus, opéhing a file with 80 byte records and a blocking factor of 3

and 1 buffer requires 34 + 1 ¥ (U4+256) = 294 bytes. With 4 buffers
the requirement is 34 + U4 * (4+256) = 1074 bytes.

-60-

i pm——

9. CbLOR, GRAPHICS, AND OTHER TERMINAL FEATURES

9.1 The PLOT Statement

The PLOT Statement 1is used to output the 8 bit value of an
expression to the screen. The form of the PLOT statement is as
followvs:

PLOT c¢xpression

or
PLOT expression,expression,...,expression

The expressions 1in the expression list must evaluate to a quantity in
the range 0 to 255. Other values will cause a CF error.
' For example, the following statement will cause the letters ABCDEF
to be displaycd on the screen. . ’

PLOT 65,66,67,68,69,70

The PLOT statement is usually used to send control codes, escape codes,
and other graphics information to the screen. For further examples,
see the following sections in this chapter, and for 1nformat10n about
CRT commands and ASCII codes, see Appendices C and E.

9.2 Color

The color displays that can be achieved on the CO!MPUCOLOR II are
an iwmportant feature of the machine. The color controls are easy to
operate and add a new dimension to traditional programming.

Both the foreground and background can be set to a desired color.
The foreground can be made to blink, and in addition, characters may be
either single or double height.

Color, blink and character size can each be set in one of two
ways. The first method involves the use of the color and special keys.
To set the background color, the BG Ol key is pressed. Then the actual
color is set by simultaneously striking the control and the letter key
- corresponding to the desired color. They are as follows:

BLACK: P BLUE: T
RED: Q MAGENTA: U
GREEN: R CYAN: A
YELLOY: S VHITE: W

On the deluxe and cxtenddd keyboards, the color keys are in a
separate pad and are simply struck to sclect color.

-61-~

The foreground can be set by depressing -the FG ON key and
selecting a color as for the bacikground.

The BLINK ON key sets the blink in motion and the BL/A7 OFF key
turns it off. The double~height characters can be sct by the ATOH key
and small characters are reset by the BEL/AT OFF key. DBecause this key
controls both blink and character height, if' the user wishes to -turn
the blink off while using the larger characters, and continuc typing in
large characters, the BL/AT OFF key and Lhe AT ON kLy nmust be struck in

"immediate succession.

While these codes can be wused in the CRT mode to test color
combinatons and display appearances, ctc., the characters will only be
accepted in DBASIC if they are containcd in quoted strings or REMARK

statements. If not so contained, they will cause a syntax error (SN).

Color can be selected without being contained in a quoted string
by the second method of setting color, blink and character heignt.
This is dohe through the use of the PLOT statement, as shown below:

PLOT 29 (sets foreground color)

PLGT 30 (sets baclkground color)

PLOT 31 (sets blink on)

PLOT 1k (sets large characters)

PLOT 15 (sets blink and large characters off)

The individual colors arec selcqted by PLOT statements using the
internal code of cach color lkey, as shown below:

PLOT 16 (black) ' PLOT 20 (blue)

PLOT 17 (rcd) PLOT 21 (magenta)
* PLOT 18 (green) PLOT 22 (cyan)

PLOT 19 _ (yellow) ‘ PLOT 23 (white)

s
. [
»

Because blink off and standard character height are controlled by the
same code, retaining double character height while turning off the
blink will »recquire PLOT 15 and PLOT 14 statcments in immediate
sequence. The PLOT comrands can be used in a BASIC program to set the
color of the screen output.

The PLOT character set, BLINK, BACKGROUND COLOR, and FOREGROUND

COLOR can also be set by means of the PLOT 6 statenment. The general
form is as showun: . :

..PLOT 6,number

where. number . must be an integer between 0 and 255. This_number is
represented in binary digits up to eight bits long and arranged in a
table as shown below. (Also shown in Appendix C.2)

AT Ab A5 Aj A3 A2 M AO -

BACKGROUD FOREGROQUND
PLOT [BLIMNK

BLUE | GREEHN RED BLUE GREEN RED

~02-

" The foregound and background colors arc formed, as in a color
television, by combinations of the blue, red, and green color guns.
When the binary number is placed in the eight bit location, a 1 in any
position turns that bit on. The formula for determining the desired
number in decimal is:

PLOT#128 + BLINX!#G4 + BACKGROUND*8 + FOREGROUND

The program below illustrates the various rcsults that can be achieved
with the PLOT ¢ command.

10 PLOT 6,G:REM SET CYAN FORLEGROUND AND BLACK BACKGROUND
20 PRINT "PLCT(0~-1),BLINK(0-1),BCKGRD(0-7),FORGRD(0-7): *;
25 INPUT "%, PL,BL,DBG,IG

30 PLOT 6,PL#128+DL¥0U+LG*8+FG

4O REM 30 SETS THE COLOR INKFOLMATION YOU SELECTED

50 PRIUT “THIS IS WHAT YOU SELECTED";:PLOT6,6:PRINT

60 RE! RESET COLOR BEFORE LIUEFEED

70 GOTO 20

9.3 Cursor Controls

The following plot commands position the cursor at a desired
location on the screen:

PLOT 10 (moves the cursor 1 space down)

PLOT 25 (rioves cursor one space to the right)

PLOT 28 (moves cursor one space up)

PLOT 26 (rmoves cursor onc space to the left)

PLOT 8. (HOME -~ moves cursor to postion at topmost
left of screen)

PLOT 9 (TAB - moves cursor to beginning of next
print zone)

.PLOT 3,X,Y (CURSOR X,Y - moves cursor to position of

given x,y coordinates) -

The cursor can be moved off the screen by using PLOT 3,54,0. Page
mode, which is entered froin the keyboard via ESC X, writes characters
left to right, and does not scroll the screen. From BASIC it is
entered with a PLOT 27,24 statement.

Scroll mode, which is entered via ESC K, writes left to right and
scrolls the screen for a continuous readout. It is entered in BASIC by
PLOT 27,11.

Vertical mode, which is entered via ESC J writes top to bottom in
one column only. It does not scroll the display. This mode can be
reached through BASIC by the PLOT 27,12 statement.

ERASE PAGE sets the background color of the entire screen to the
background color of the last character sent to the screen. From BASIC
it is entered by PLOT 12.

The' ERASE LI!E kcy erases the line containing the cursor, setting
the background color as indicated by the last character. The cursor is

&

..63...

”

sent to the beginning of the linc. The cursor can be controlled in
this way through BASIC by PLOT 11. The following program illustrates
the use of some cursor controls.

10 DEF FNR(X) = INT (X®RND(1))

20 FOR I = 0 TO 3: READ D(I): NEXT I

30 DATA 10,25,28,25: RE!! CURSOR CO;ITROL VALUES

N0 PLOT 6,0,12,27,2%: REM ERASE PAGE AND SET PAGE MODE

50 PLOT 3, FER(64), FNR(32): RE4 SELECT RANDOI STARTING POINT
60 FOR I = 1 TO 1000

70 PLOT 6, (FNR(7)+1)#8: REM SET VISIBLE EACKGROUND COLOR
80 PLOT 20,26: REM OUTPUT SPACE, TIEN BACKSPACE

00 PLOT D(FNR(Y4)): REM OUTPUT A RANDOM DIRECTION

100 MEXT I

110 PLOT 6,2,8: REM SET COLOR AND RETURH HOME

420 END '

9.4 Vector Graphics

The vector graphics capability of the COI{PUCOLOR II allows the
user - to draw almost any desired display. The vector graphics are
enabled by entcring the graphic plot mode by depressing CONTROL B
(binary 2) from the lieyboard or by exccuting PLOT 2 in BASIC. Vhile in
the graphic plot subiiode the user can choose from sixteen (16) plot
submodes that perform a variety of graphic functions. The initial plot
submode is the XY Point Plot rniode. In this mode the user can turn on
and off individual plot blocks on the scrcen. Other plot submodes can
easily be entered by a binary cede from 240 Lo 2%5.

An additional feature is available to allow a graphic plot to be
erased by simply Setting the FLAG bit on before entering the plot mode.
This causes a logical XOR function to be used in setting the plot
blocks. Thus, if the same point is plotted a second time, it 1is
erased, Also, any plot subnode may be entered from any other plot
submode except Character Plot mode., The various submsodes and their
interactions arc explained in detail below.

Colors may be defined on & character hy character basis only and
the color of an individual plot block as uell as other intensified plot

.blocks within a character will be the most recent color defined when a

new plot block within that character is turned on. To change color, it
is necessary to exit the current plot submode, set the new color, and
re-enter the plot mode. ‘

The character grid on the screen is 64 characters wide and 32
characters high. The zero reference point for all plotting is the
lower left hand corner of the screen. Iach character 1is further
subdivided into 8 plot bloclis -- 2 blocks wide and 4 blocks high. This
gives a 128 by 128 grid of plot blocks which may be individually set.
All plot submodes operate on this grid size and have the same reference
point (0,0). Positive directions are up and to the right, and negative
directions arc dewn and to the left.

All plot submodes and the general Plot Mode are términated or
exited by the binary code 255. When ever Lhis code is issued, the plot
mode is terminated and must be re-entered by issuing a CONTROL B or
binary 2.

-6~

On the deluxe keyboards there are sixteen (16) special functions
keys 1labelled FO through Fi5. Using these keys the various plot
subrnodes can be entered directly in the CRT mode (not in BASIC.) The
FO ltey produces a binary 240 code, F1 a 241, etc., up to the F15 key
which produces a 255. In DBASIC these plot submodes are entered by
using the PLOT statement as described below.

Plot Mode Escape - (255 bLinary)

This code 1is wused to exit from the Plot Mode or any of the plot
submodes. On the deluxe keyboards the F15 function key performs a Plot
Mode Escape.

Character Plot - (254 binary)

The Character Plot Submode is entered by a 254 after the general
Plot HMode is entered. All subsequent characters issued are treated as
plot characters except for 255 which is the Plot Mode Escape. Thus,
other plot submodcs c¢an not be centered directly from this mode. The
plot characters arc constructed by ORing together the selected plot
"blocks to form the composite character as follous: :

01 HEX 10 10 HEX 0 1
00 00
00 00
, 00 00
02 HEX 00 20 HEX * 0 0
10 01
* 00 00
00 00
ol HEX 00 40O HEX 00
00 00
10 01 :
00 00
08 HEX 0 0 80 HEX 00
00 00
00 00
10 01

The Character Plot causes the the 6 wide by 8 high dot matrix to
be divided into 8 blocks organized 2 blocks wide and 4 blocks high.
Each block consists of a dot matrixz 3 dots wide and 2 dots high. Each
block corresponds to an individual bit of the 8 bit plot character.
Large characters may also be formed by using the plot blocks in several
character positions to crecate a large 5 by 7 matrix or any other
desired size.) '

-65-

X Point Plot - (binary 253)

The X Point Plot is automatically entered upon receipt of the
general Plot lode code, binary 2 or CONTROL B. It may also be cntered
directly from any of the .other plot submodes. AMter entering the X
Point Plot submode, the next byte received defines the X value of the
block that is desired to be plotted. The X value may range from 0 to
127 and all other values will causc 128 to be subtracted from the value
of X.

The X Point Plot may be terminated by the code 255 which also
causes the the general Plot Hode to be terminated. Any of the other
plot submodes may be entered directly from the X Point Plot by simply
entering the appropriate plot submode codes from 240 to 255. :

It should be noted that this plot submode does not cause a plot
block to be intecnsified, it only defines the X value. Once the X value
is received, the COMPUCOLOR II is automatically placed in the Y Point
Plot mode. Thus, the next code sent will be the Y value which mnay
range from 0 to 127.

The procedure for entering and cxiting the X Point Plot mode is
shown below:

Function Code
Plot liode 2
X1 Value 0 to 127
Y1 Value 0 to 127
Xn Value . 0 to 127
Yn Valué -0 to 127
Plot Escape 255

or
Plot Submode 210 to 2514

The X Point Plot in conjunction with the Y Point Plot allows any

block on a 128 by 128 block matrix to be intensified. Thus, in BASIC
the above sequence becounes:

PLOT 2,X1,Y1, ... ,XN,YN,255

The folloﬁing statement will plot points at the screen's four corners:
pLor. 2, 0,0, 0,127, 127,127, 127,0, 255

Y Point Plot - (binary 252)

The Y Point Plot is cnterced by a binary 252 code after the general

Plot Mode is entercd or automatically from the X Point Plot submode

after -the X valuc has been sent. The next byte received after entering

the Y Point Plot submode defines the Y value of the block fo be plotted

" and intesifies that block. If the new blocl: is within a character

position that contains an ASCIX ‘haracter, then the ASCII character is
replaced completecly by the new blouck and its associated color.

-66-

XY Incremental Point Plot - (binary 251)

The XY Incremental Point Plot submode is ¢ntered by a binary 251
code while 1in the general Plot Mode. The next byte defines the next
two (2) increments as shown below. This byte may take on values in the.
range 0 to 239 since the binary codes from 240 to 255 are used for the
plot submodes, B

b7 b6 bs bi b3 b2 b1 bO

(x) [y 1 [x 1 (Y]
1 1 2 2

Plot Blocl: 1 Plat Block 2
The 4 two bit codes are defined as follous:
No change
Negative incrcment

Positive increnoent
o change

wMn = O

If b0 through b3 arc "O"s, then the plot block will not plot, but
will still increment according to the coding of bl through bT7. This
allows skipping a plot increment by plotting an "invisible™ block, The
XY Incremental Plot node may be terminated by the Plot ldode Escape code
255.

The following sample program will do a random walk using the

"Incremental Point Plot mode.

10 DEF FRR(X)=INT(X*RND(1))

20 PLOT 12,6,6 : REM CLEAR SCREEN AND PLOT IN LIGHT BLUE

30 PLOT 2,63,63 : REM PLOT POINT IN THE MIDDLE OF THE SCREEN
40 PLOT 251 : REM ENTER INCREMENTAL POINT PLOT MODE

50 FOR I=1 TO 1000 -

60 INC=FHR(3)*6U+FNR(3)*16+FNR(3)*4+FNR(3)

70 REM USE ONLY THE FIRST THREE DIRECTION CODES

75 IF (INC AND 15)=0 THEM 60 :RFM MO ALLOW INVISIBLE BLOCKS
80 PLOT INC

90 NEXT I

100 PLOT 255 : REM ESCAPE FROi PLOT MODE
"110 END

X Bar Graph, X0 Valuec - (250 binary)

, The X Bar Graph, X0 Value plot submode is entered by a binary 250
code after the general Plet liode is entered. It may also be entered
directly from any of the other plot submedes except for Character Plot.
After entering the X Bar Graph, X0 Value submode, the next byte defines
the X0. valuc or the left horizontal start block of the horizontal bar
graph. The X0 mnay range in value from 0 to 127 and all ‘other values
have 128 subtracted giving a new X0 value in the range 0 to 127.

Upon receiving the X0 value,rthe value of X0 is stored in rnenory
and the CCUPUCOLOR II is automatically placed in the X Bar Graph, Y

~67-~

Value plot submode (249 binary.) After receiving the next byte as the
Y value, the COMPUCOLOR II is automatically placed in the X Bar Graph,
X Max Value plot submode (248 binary.) After receiving the X Max value
the horizontal bar graph is drawn on the screen and the COMPUCOLOR II
is placed back in the X Rar Graph, Y Value plot submiode ready to
reccive new Y and X HMax value pairs until a new plot subirode is
entered. Note that once an X0 valuc is dcfined it is unnecessary to
respecify it for each horizontal line in the bar graph. This procey®:
is shown in the following cxample. B

Function Code
Plot Mode 2
or
Plot Submode 210 to 253
X Bar Graph, %0 Value 250
X0 value 0 to 127
Y value -~ line 1 0 to 127

X lax value - line 1 0 to 127

Y value - line n .0 to 127
X Max value - line n 0 to 127
Plot Escape 255

- O r‘ .
Plot Subnode 240 to 254

-

For example, from BASIC & horizontul bar graph plotting a sine
function cuan bc drawn as follows:

10 PLOT 6,6,12 :REM SET COLOR TO CYAN, AND CLEAR SCREEN
20 X0 = 10 :RCIf SET X0 VALUEZ.

30 PLOT 2,250,X0:REH ENTER X BAR GRAPH SUDIIODE ~ SET XO
40 FOR Y=0 TO 127 STEP 2 :RFM SET Y VALUES

50 PLOT Y,X0+50#(1+SIN(Y/10)) :REM SCALE SINE FUNCTION

60 MNEXT Y

70 PLOT 255 :REM PLOT ESCAPE

As can be scen from the above examples, once in the X Bar Graph,
X0 mode, it is necessary only to define only two points for each new
line in the bar graph. The bar graph is drawn after receiving the X
Max value. Any of the other plot submodes can be cntered directly from
the three X Bar Graph submodes. Multiple colored bar graphs can be
drawn by leaving plot mode, changing the color, and re-entering the X
Bar Graph, Y Value submodc (249 binary.) In this case the original YD
value would be preserved. Lines drawn in this mode are one plot block
wide; thicker lines can be drawn by changing the Y value by 1 and

replotting it along with the same X Max value or wusing the X
Incremental Bar Graph submode. '

68~

X Bar Graph, Y Value -~ (249 binary)

The X Bar Graph, Y Value plot submode is entered by a binary 249
code or automatically from the X Bar Graph, X0 Value plot submode.
After entering this submode the next byte is used as the Y value of the
next line in the bar graph to be plotted, and the COMPUCOLOR II is
automatically placed into the X Bar Graph, X Max Value plot submode
(248 binary.) Any of the other plot subnodes can be entered ‘directly
- from this submocde. For mnore information on this subunode see the
description of the X Bar Graph, X0 Value submode (250 binary.)

X Bar Graph, X Max Value -~ (248 bLinary)

The X Bar Graph, X Max Value plot subinode is entered by a binary
248 code or automatically from the X Bar Graph, Y Value plot submode.
After entering this submode the next byte is used as the X Max value of
the line in the bar graph. The line is plotted, and the COMPUCOLOR II
is automatically placed into the X Bar Graph, Y Value plot submode (249 .
binary) which allows the next linc in the bar graph to be defined and
drawn. Any of the other plot submodes can be c¢ntered directly from
this submode. For more information on this submodc see the description
of the X Bar Graph, %0 value submode (250 binary.)

X Incremental Bar Graph - (247 binary)

The X Incremental Bar Graph plot submnode ic cntered by a binary
247 code. After entering this submode the next byte defines the next
two horizontal and vertical incrcments for two horizontal bar graphs.
Thus, it is possible to pozition a bar graph on cither side of the
present location by adding or subtracting an increment to the bar
graph previously * defined. The coding and composition of tie
incremental dircction code is the same as that defined in the XY
Incremental Point Plot subtwmode (251 binary.) Any of the other plot
submodes can be cntered directly from this submode.

1

Y Bar Graph, YO Value -~ (246 binary)

The Y Bar Graph, Y0 Value plot subiiode is entered by a binary 246
code after the gencral Plot lode is entered. It may also be entered
directly from any of the other plot submodes except for Character Plot.
After entering the Y Bar Graph, YO Value submode, the next byte defines
the YO value or the left vertical start block of the vertical bar
graph., The YO0 may range in value from 0 to 127 and all other values
have 128 subtractecd giving a new YO value in the range 0 to 127.

Upon receiving the Y0 value, the value of Y0 is stored in memory
and the COMPUCOLOR II is automatically placed in the Y Bar Graph, X
Value plot submode (2145 binary.) After receiving the next byte as the

~69-

X value, the COMPUCOLOR II is automaticelly placed in the Y Bar Graph,
Y tiax Value plot submode (244 binary.) Aftcr receiving the Y Max value '
the vertical bar graph is drawn on the screcen dnd the COMPUCOLOR II is
placed back in the Y Bar Graph, X Value plot submode ready to receive
new X and Y Hax value pairs until a new plot submode is cntered. Mote
that once an YO value is defined it is unnecessary to respecify it for
each vertical line in the bar graph. This process 1is shown in the
{ollowing exanmple.

Function Codc
Plot lode 2
or
Plot Subnmode 240 to 253
Y Bar Graph, YO Value 246
YO value 0 to 127
X value - line 1 0 to 127

Y HMax value - line 1 0 to 127

X valuve - line n 0 to 127
Y Hax valuz - line n 0 to 127
Plot Escape 255
or
.Plot Submode 210 to 254

~
7 il

For exanpley from BASIC a vertical bar graph plotting the arca
under a random function can be drawn as follows:

10 PLOT 6,6,12 :REM SET COLOR TO CYAMN AND CLEAR SCREEN
20 YO = 10 :REM SET YO VALUE

30 PLOT 2,246,Y0:REM ENTER Y BAR GRAPH SUBMODE -~ SET YO
N0 FOR X=0 TO 127 :REY SET X VALUES

50 PLOT X,YO0+100*RHD(1) :REM SCALE RANDO:f FUNCTION

60 HEXT X

70 PLOT 255 ¢REM PLOT ESCAPE

As can be seen from the above examples, once in the Y Bar Graph,
Y0 mode, it is necessary only to define only two points for each new
line in the bar graph. The bar graph is drawn after receiving the Y
Max value. Any of the other plot subnodes can be entered directly from
the threec Y Bar Groph submodes. Hultiple colored bar graphs can be
drawn by leaving plot node, changing the color, and re-entering the Y
Bar Graph, X Value submode (245 binary.) 1In this case the original YO
value is preserved. Lines drawn in this mode arc one plot block wide;
thicker lines can be drawn by changing the X valuc by 1 and replotting

it along with the samne Y Max value or using the Y Incremental Bar Graph
submode.

~70~

Y Bar Graph, X Value - (245 binary)

The Y Bar Graph, X Value plot submode is entered by a binary 245
code or automatically from the Y Bar Graph, Y0 Value plot submode.
After entering this submiode the next byte is used as the X value of theg
next line in the bar graph to be plotted, and the COMPUCOLOR II i°
automatically placed into the Y Bar Graph, Y Max Value plot subnode
(244 binary.) Any of the other plot subuodes can be entered dircectly
from this submodc, For more information on this submode sce the
description of the Y Bar Graph, YO Value submode (246 binary.)

Y Bar Graph, Y Max Valuc - (244 binary)

The Y Bar Graph, Y Max Value plot submode is entered by a binary
244 code or automatically from the Y Bar Graph, X Value plot submode.
After entering this submode the next byte is uscd as the Y Max value of
the line in the bar grapan. The line is plotted, and the COMPUCOLOR 1II
is automatically placed into the Y Bar Graph, X Valuec plot submode (245
binary) which allows the next line in the bar graph to be defined and
drawn, Any of the other plot subsiodes can be entered directly from
this subnode. For more information on this submode see the description
of the Y Bar Graph, YO value submode (246 binary.)

Y Iﬁcremental Bar Graph - (243 binary)

The Y Incremental Bar Graph plot submode is centered by a binary
243 code. After cntering this submode the next byte defines the next
two vertical and horizontal increments for two vertical bar graphs.
Thus, it is possible to poasition a bar graph on ecither side of the
present location by adding or subtracting an increment to the bar grapn
previously defined. The coding and composition of the increnental
direction code is the same as that defined in the XY Incrementzal Point
Plot submode (251 Ovinary.) Any of the other plot submodes can be
entered directly from this subrode. '

X0 Vector Plot - (242 binary)

The X0 Vector Plot submode is entered by a binary 242 code after
the general Plot Mode is entered. After cntering the X0 Vector Mode
the next byte defines the X0 point of the vector being drawn. The
vector mode requires two endpoints to be defined (i.e. X0,Y0 and
X1,Y1.) The X1,Y1 values should be previously defined by way of the X
and Y Point Plot submodes (253 and 252 binary.) Upon receiving the X0
value the COIIPUCOLOR II is automatically placed into Y0 Vector Plot
submode. After rcceiving the YO value the COMPUCOLOR II plots the best
fitting straight line betwcen X0,Y0 and X1,Y1 using the plot blocks and
returns to the X0 Vector Plot submode, recady to plot vectors between
successive X0,Y0 pairs. This process is shown below:

-71-

Function) Code

Plot llode 2

or
X Point Plot 253
X1 Vector point 1 0 to 127
Y1 Vector point 1 0 to 127
X0 Vector Plot 242
X0 Vector point 1 0 to 127
Y0 Vector point 1 0 to 127
X0 Vector point n 0 to 127
YO Vector point n 0 to 127
Plot Escape 255

or '
Plot Submnode 210 to 25X

Thus, in BASIC the above sequence becoines

100 PLOT 2, X%1,Y1

110 PLOT 242

120 FOR I=1 TO i
130 PLOT X0(X),Y0(I)

140 NEXT I

150 PLOT 255

To plot a rectangle around the entire screen sinmply execute the
statement

PLOT 2, 0,0, 242, 0,127, 127,127, 127,0, 0,0, 255
Y0 Vector Plot - (241 binary)

The Y0 Vector Plol submode is centered by a binary 21 code after
the general Plot Mode is entered. After entering this submode the
next byte defines the YO value of the vector being drawn. There is no
restriction on Y0 except that it nust be in the range 0 to 127. Upon
receiving the Y0 value a vector is plotted from X1,Y1 to Y0,Y0 with
X0,Y0 replacing the old X1,Y1 endpoint. If the next vector has a X1,Y1
value cqual to the old X0,Y0 value, then only the necw X0,Y0 values neced
be sent, This effectively draws a vector. from the present X0,Y"
position to the new X0,Y0 position. For more information on this
subitode see the description of the X0 Vector Plot submode (242 binary.)

~12-

Incremental Vector Plot - (240 binary)

The Incremental Vector Plot submode is entered by a binary 240
code after the gencral Plot Mode is enterced. After entering this
submode the next byte defines the increments in the X0,Y0 and X1,Y1
values for the vector from X1,Y1 to XO0,YO. The values for the
increments are defined as follows:

b7 b6 bs DbH b3 b2 bt boO

[x 1 LY 1 [x 1 (Y]
1 1 0 0

The 4 two bit codes for the increments are defined as follows:

No change
Negative increment
Positive increment
No change

wnh —-0

The incremental direction codes are similar to those used for the other
incerement plot submodes. [Furthermore, if either half of the word is
all zeroes, then the corresponding X,Y values will be changed but no
vector will be drawn. This allows endpoints for the vectors to be
skipped. The only time a vector is drawn is when both halfs of the
vord are non-zero. The Incremental Vector Plot submode does not
automatically transfer control to any other plot submode. Therefore, a
series of incrcenental movements in both X1,Y1 and YX0,Y0 can be made by
sending consecutive incremental dircetion codes.

10. FCS

10.1 Introduction to FCS 1

The File Control Systen, or FCS, is used to manage the diskettes
which store programs. The File Control System enables the user to
store and save programs, screen displays, and arrays.

To enter FCS the user must first type ESC D, then the nessage
prompt FCS> will appear. Once in the File Control System, counands
should be entered after the FCS> prompt. For example, the command DIR
should be used for listing the directory of a diskette. To change from
one drive to another, the command DEVO: must be typed for the internal
drive, and DEV1: must be typed for the cexternal disk drive.

~ Machine-code programs may be in e¢ither one of two different FCS
file typecs:

FILE TYPE .PRG

A .PRG type file is created vith the FCS SAVE command. It is a
machine~code program in "Memory image" {orn. The information in the
file is a contiguous mnenory inmage of the program. The RUN comand will
load a .PRG file into memory starting at the specified Load Address in
the file's directory entry, and begin exccution at the Start Address
specified in the file's dircctory entry. A .PRG file is loaded into
memory much faster than an .LDA file. Therefore, once a program is
working, it should be saved in .PRG form with the SAVE command, so that
subsequent RUl's of the program will be quicker.

FILE TYPE .LDA

An .LDA type file 1is created by the COMPUCOLOR 8080 Assembler.
The file consists of one or more data rccords and is terminated by one
end record. Each date record specifics a load address for the record,
and one or more data bytes to be loaded sequentially into memory
starting at the load address. The end record specifies the starting

(execution) address for the program (the operand of the END statement
in the source program).

10.2 The FCS Commands

The FICS system has a number of commands which enable the user to
manipulate records as desired. A list of commands appears in Appendix
B.1. The following commands are used as cxplained below. BRefore any of
these commands may be used, the user must first enter the File Control
System by typing ESC D as described above. In the following
descriptions of commands, angle brackets, <>, will be used to denote an
element of a statement that is optionzl. The 'Device Name' refers (-
the name and number of the disk drive being used. The COMPUCOLOR 1II
has an internzl disk drive, CDO} and an optional external disk drive,
Ch1. The 'File Spec' is the nanc that the user has assigned to the

~Th-

file followed by the file type (.PRG, .LDA, .BAS, etc.) and,
optionally, a semicolon (;) followed by a version numnber in the range
01 to FF HEX. If the specified file is being rcad, then the defaulk
version is the file with the largest version number. With files being
written, the default version numbcer is one higher than the largest
version number of an existing file on the specified device. If no file
currently eXists on the disk with the spccified name, then the default
‘version number is 01. The 'Memory Spec' is the 'Start Address!' in HEX
followed * by the number of bytes or followed by hyphen (~) and the *'End
Address'. MNOTE: only the first 3 letters of a coumand are required. ’

COPY

The COPY command allows the user to copy. a file, possibly to
another disk drive, and is of the form:

COPY <Device Name:> File Spec TO <Dcvice Name:> File Spec
For example:
COP O0:TEST.PRG TO 1:A4BC
When entered, this command will copy the latest version of TEST.PRG on
device 0 to file name ABC.PRG on device 1.
DELETE

The DELETE command allows for the deletion of any file on the
diskette, and is of the form: '

DELETE <Device Name:»> File Spec
For exanple:

DEL TEST.BAS;1

DEL 1:TEST.PRG;?2

DEL CD1:NAME.RND; 1
The complete File Spec is needed to delete a file. This form of file
protection is provided to prevent accidental erasures.

DEVICE

The DEVICE cowmmand allows the user to change the default device or
drive, and is of the form: '

DEVICE <Device lame:>

If the Device Heme is not specified, then the current default device is
listed. For example: b

~75-

DEV CDO:

will change the default device to the COMPUCOLOR internal disk drive.

DIRECTORY

The DIRECTORY command lists all the programs on the diskette on
any device, and is of the form:

DIRECTORY <Device Hame:>
For example:
DIR

DIR CD1:

DUFLICATE

The DUPLICATE command allows all the files on one diskette to be
copied to another diskette. The two specified devices must be of the
same type, but have different numbers. The command is of the form:

DUPLICATE Device Name: TO Device Name:
For example:

DUP 0: TO 1:

INITIALIZE

The INITIALIZE command allows the user to give a diskette a
ten-letter name and optionally assign the number of allotted directory
blocks. This command clears all the directory information on a
diskette, effectively deleting all files on the diskette. It should
only be used when a "clean" diskette is desired. It is of the form:

INITIALIZE <Device Name:> Volume Name No. of DIR blocks
For exampie:

INI CDO:SAMPLENAME
INI CD1:TESTDISKO1 10 (the 10 is optional)

The COMPUCOLOR Disk directory size defaults to 6 blocks which can hold
34 files. Each directory block can hold information on 6 files;
however, 2 entries arc ncccesary for the Volume Name and free space
entries, i.e. 34 =6 # 6 - 2,

~76-

LOAD

The LOAD command allows the user to load any type file into any
RAM memory location he may wish. This indicates that the user may
bring a display to the screen which is correct. LOAD command uses the
same guide 1lines as the SAVE command. The LOAD command operates
differently depending on tlic file type loaded. The default type |is
.LDA.)

To LOAD a file type other than .LDA, the command is of the form:
LOAD <Device MName:> File Spec <Load Address>

The file 1is assumed to be a "memory image" file and is loaded
contiguously into memory starting either at the load address in the
file's directory entry or at the load adress specified in the command
line. . ; '

' To load a file of type .LDA, the command is of the form: .

LOAD <Device MName:> File Spec <Lowest Address <Memory Specd>

Each data record in the file is loaded into memory. If Lowest Address
and Memory Spec are not specified, then each record i1s loaded at the
address specified in the record. ‘

If Lowest Address and Memory Spec are specified, the default

Memory Spec 1is AOQC-FFFTF. A "mewmory range" will be determined as
follows:

1. If the Hemory Spec is omitted, the range uill be AOOO-FFFF.

2. If one numaber, i.e. C000, is given for the Hemory Spec, then
the range will be specified by the given number as the low
limit and FFFF as the high limit of the range.

3. If two numbers, separated by a hyphen are given for the
HMemory Spec, then the range is specified by those numbers.

N, If two numbers, separated by a space or comma, are given for
the Hemory Spec, then the first number will be the low 1limit
of the range, and the seccond number is the byte count used to
calculate the high limit of the range. For example, DO0OO 400
will give a range DO0O-D3FF. ‘

An "offset"™ will be calculated as "low limit of memory range" minus
"Lowest Address". Each data record will then be loaded at the address
specified in the record plus the "offset". Data will be loaded only
. within the "memory range" as determined above. HOTE: BASIC programs
must be LOADed and SAVEd in BASIC, not in FCS.

-T1-

READ
The READ command allows retrieval of information on any part of
the diskette without regard to the diectory or program boundaries. The
command is of the form:
READ <Device Name:> Start Block Memory Spec
For example:

READ CDO: 20 7000-7FFF

reads 4096 bytes (1000 HEX) from thc internal disk drive starting at
block 32 (20 HEX) into the display mermory at T000-T7FFF.

REHAME
The RENAME command allows the uscr, in one step, to change the
file name, file, type and the version nunmber scparately or collectively
without changing the information stored in the program. The statcment
is of the form:
RENAME <Device HMame:> File Spec TO File Spec
For examplc:

REN TEST.PRG;1 TO HWTEST.PRG;2

renanes the file TEST.PRG;1 to NWTEST.PRG;2.

RUHN
The RUN command is used to load and execute machine-code programs.
Only two file are permittcd with the RUN command: .PRG and .LDA. The
default filec type is .PRG. To execute an .LDA file the .LDA extension
must be specified. The RUN command is of the form:
RUN <Device Name:> File Specc

For exampie:

RUN CHESS

/
loads and executes a file CHESS.PRG from the default device.

-78-

SAVE

The SAVE command allows the wuser to save any type of data,
program, ' or display in a file on a diskette. The command is of the
form: ' ' :

SAVE <{Device Name:> File Spec Memory Spec Start Address
' Actual Address

For example:
SAVE SCREEN.DSP 6000 1000
or
~ SAVE SCREEN.DSP 60OO-GFFF

will save the screen dispiay in a file called SCREEN.DSP.

WRITE

The WRITE command allows information to be written anywhere on the
diskcttc' without rcgard to the directory or previous program
boundaries, and is of the forn: '

WRITE <Device MName:> Start Block Number Mcmory Spec

NOTE: It is possible to destroy the FCS directory information using the
WRITE command. Care should always bc taken when using this command.

=7 0=

APPENDICES

A. DISK BASIC

A.1 BASIC Statements

The following summary of DASIC statements defines the general
format for cach statement and gives a brief explanation. Optional
items are enclosed in angle brackets, '<' and '>'. The following items
in the syntax descriptions are used to represent different types of
variables and expressions:

var - numeric or string variable

nvar - nunreric variable

svar - string varaible

expr - numeric or string expression
" nexpr - numeric expression

sexpr string expression

1

STATEMENT SYNTAX AND DESCRIPTION

CLEAR - CLEAR <nexpr>
Clears all variables and optionally sets the -string space
size to” nexpr bytes. '

CONT CONMT
) Continues execution after CTRL/J or LINEFEED,

DATA DATA value list
Defines data values to be read using the READ statement.

DEF DEF FH nvar (nvar) = nexpr
Defines a user function to be used in the program.

DI DIM var(nexpr <,...,nexpr>) <,...>
Reserves space for lists and tables according to subscripts
specified aftcr variable name. Up to 255 dimensions.

END END
Terminates program execution.

FILE "N" FILE "N",filenane,records,rccord size,blocking factor
Crecates a new random file with the specifieq number of
records (1-32767), record size (1-32767 bytes), and blocking
factor (1-255). File name is a string expression containing
a valid FCS file name. ¥

-80~

FILE

FILE

FILE

FILE
FILE
FILE
FOR
GET
GOSUB
GOTO

IF

IIRII

"All

i) C"

IIDII

IITI;

llEll

FILE "R",filenumber,filename,buffers <;records,record size,
blocking factor>

Opens a random file uwith the specified file number (1-127)
and number of buffers (1-255).

FILE "A",file,current record <,records, record size, blocking
factor>
Finds the attributes for the specified file.

FILE "C",filel <, ...>
Closes the specified files .and releases the buffer space.

FILE "D",filel <,...>
VWirites any modified buffers for the specified files
immediately to the corresponding devices,

FILE "T" ¢, line number>
Causes flle errors to trap to the spe01f1ed line number. HNo
line number turns the file error trapping off.

FILE "EY,file,crror,line number
Finds the dloV error nunmber and location of the last file
error.

FOR nvar = nexprl TO nexpr2 <STEP nexpr3>
Sets up a loop to be executed the specified number of times.

GET file<,record{,first>>;nvar,svar(byte count],...

Reads from the rg001d in the file starting from the first
byte into the variables in the list. String variables must
have a byte count (1~-255).

GOSUB line number
Used to transfer control to the spe01f1ed line number of a
subroutine,

GOTO line nuuber
Used to "unconditionally transfer control to the specified
line number.

IF nexpr GOTO line number

"IF nexpr THEN line number

Used to conditionally transfer control to the specified 1line
nunmber,

IF nexpr THEN statement <:statement:...>
Used to conditionally execute BASIC statements.

-81-

INPUT

LIST

LOAD

NEXT

ON

OouT

PLOT

POKE

PRINT

INPUT <"string";> var <,var,...>
Used to input data from the terminal, prompts with either "7?"
or the optional quoted string as the prompt.

LIST <line nunber>
Prints the uger program currently in memory on the CRT
display, optionally, starting from the specified line number.

LOAD filename]

Loads the specified file. If no extension is specified, then
a BASIC program is loadcd; otherwise, the L.ARY extension
loads the sapecified numeric array, and the .DAT extension
loads the specified data into menmory after BASIC's workspace.

NEXT <nvar <{,nvar,...>»>
Placed at the end of a FFOR loop to return control to the FOR
statement.

ON nexpr GOSUPR line number <,line number,...> .
Multiple GOSUB statcment. Transfers control to the line
number specified by nexpr.

ON nexpr GOTO line number <,line number,...> ‘
Multiple GOTO statement. Transfers control to the 1line
number specified by nexpr.

OUT port,nexpr

Outputs the specified nexpr (0-255) to the 8080 port (0-255).
CAUTION: Do not output to the CRT controller chips ports
(96-111).

PLOT nefpr <{,nexpr,...>
Sends the one byte results (0-255) of the expressions to the
CRT display. '

POKE location, nexpr
Causes the one byte result of nexpr to be placed in the
specified memory location (~32768 to 65535).

PRINT expr <,cXpr,...>
PRINT expr <;expri...»>

-Prints the results of the expressions in the 1list. Conmas

arc used for normal spacing, and semicolons are used for
compressed spacing. If either a comma or a scmicolon is the
last item in the print 1list, the carriage return is
suppressed.,

PRINT SPC(necxpr)
Prints the specified number of spaces. May be placed
anywhere in the print list.

PRINT TAB(nexpr)

Tabs to the specified c¢olumn. May be placed anywhere in the
print list. ‘

~82-

-~

PUT

READ

REM

RESTORE

RETURN

RUN

SAVE

WAIT

Equivalent to the keyword PRINT.

PUT file <,record{,firstd>; nexpr,sexpr(byte count] <,...>
Writes the expressions in the list to the record in the file
starting from the first byte. String expressions must have a
byte count.

READ var <,var,...>
Used to assign the values in DATA statements to the variables
specified in the list.

REM cornmcnt :
Used to insert explanatory comments in a BASIC progran.

RESTORE <line number>
Resets the data pointer to either the first DATA statement or
optionally to the specified line number.

RETURN
Returns program control to the statement following the last
executed GOSUEL statement.

RUN <line numbery |
Executes the LBASIC program in memory, optionally, starting at
the specified line number.

SAVE filenamne

Saves the specified file. If no cxtension is specified, the
current BASIC program in memory is saved; otherwise, the .ARY
extension saves the specified numeric array, and the .DAT
extensign saves the data in memory after BASIC's workspace.

WAIT port, nexprl <,nexpr2>

Reads from the specified 8080 port and exclusive OR's the
result with nexpr2 (0 if not present), and then AND's with
nexpri. The program waits until the result is zero before
continuing.

statement : statement < : statement : ... >

A colon 1is used to separate statements in a multiple
statement line.

-03-

A.2 BASIC Operators

SYMBOL;. FUNCTION
’ . = I\ssignment or equality test (DISK BASIC does not‘
allow the LET statement) :
- Negation or Subtraction
+ Addition or String Concatenation
' ¥ Multiplication
5 / Division
~ Exponentiation
NOT - Logical or One's complement (2 byte integer)
AND ' Logical or Bitwise AND (2 byte intcger)
OR ' Logical or Bitwise OR (2 byté intege;)
=,4$,>,<=, Relational tests (result is TRUE = -1 or FALSE = 0)
=<,>=,=>,
<
n The precedence of operators is:

1. Expressions in parentheses
2. Exponentiation (A"B)

3. Negation (-X)

b, o/

5. +y-

6. Relational Operators (=,<>,<,>,<=,>=)

7. _NOT
- 8. AND
9. OR

-B4-~

A.3 Standard Mathematical Functions

BASIC provides functions to perform certain standard mathematical
operations such as square roots, logarithms, etec,

These functions have three or four letter call names followed by a
parenthesized argument. They are precdefined and may be used anywhere in
a program.

CALL NAME FUNCTIOHN
. ABS(x) ~ Returns the abszolute value of x.
ATH(x) Returns the arctangent of x as an angle in radians in

range +7% /2), where W = 3.14159.

CALL(x) Call the user machine language program at decimal
. location 33282. (8202 HEX) D,E registers have value

of ‘X and D,E registcrs must have Y on return from
machine language routine.

Ccos(x) - Returns the cosine of x radians:
EXP(x) Returns the value of e where e = 2.71828.
FRE(x) Returns number of free bytes not in use.
INT(x) Returns the greatest integer less than or equal to x.
INP(x) Returns a byte from input port Xx. The range for x is
0 to 255.
LOG(x) Returns the natural logarithm of x.
" .PEEK(x) Returns a byte from memory address -32768<x<65535; if

X is negative the memory address is 65536+x.

POS(x) Returns the value of the current cursor position
between 0 and 063.

RND(x) ‘ Returns a random number between 0 and 1.

SGH(x) . Returns a -1, 0, or 1, indicating the sign of x.
SIN(X) Returns the sine of x radians.

.SPC(x) éauses X épaces to be generated. (Valid only in a

PRINT statcment).
SQR(x) Returns the square root of x.

TAB(x) Causes the cursor to space over to column number Xx.
(Valid only in a PRINT statement).

¢

=B85

TAN(X) - Returns the tangent of x radians.

The argument x to the functions can be a constant, a variable, an
expression, or another function. Square brackets cannot be used as the
enclosing characters for the argumcnt x, e.g. SIN[x] is illegal.

Function calls, consisting of the function name followed by a
parenthesized argument, can be used as expressions anywhere that
expressions are legal. :

Values produced by the functions SIN(x), C0S(x), ATH(x), SQR(x),
EXP(x), and LOG(x) have six significant digits.

A.% Standard String Functions

Like the intrinsic mathematical functions (e.g., SIN, LCG), BASIC
contains variouzs functions for wusze with character strings. These
functions gllow the program to access parts of a string, determine the
number of characters in a string, generate a charactcer string
corresponding to a given number or vice versa, and perform other useful
operations. The various functions available are summarized in the
following table.

CALL RAME FUNCTION

ASC(x$) Retwrns the eight Lit internal ASCII code (0-255) for
the one-character string. If the argument contains
more than one charactcer, then the code for the first
character in the string is returned. A value of 0 is
returned if the argument is a null string (LEN(x3) =
0). Scc ASCII codes in Appendix E,

CHR$(x) Generates a onc~character string having the ASCII
value of x where x is a number in the range 0 to 255.
Only one character can be generated.

FRE(x$) Returns number of free string bytes. (See CLEAR
statement in 3.171)

LEFTS(x$,I) Returns left-most I characters of string (x$). If
I>LEN(x%), then x$ is returned. g

LEN(x$) Returns the number of characters in the string x$§,
with non-printing characters and blanks being
counted.

HMID$(x$,I,J) J is optional. Without J, returns right-most

characters from x3 beginning with the Ith character.
If I>LEN(x$), MID$ returns the null string. " With 3
arguments, it returns a string of 1length J of
characters from x$ beginning with the Ith character.
If J is greater than the number if characters in x$
to the right of I, MID3 returns the rest of the
string. Argumegt ranges: 0<I<=255, 0<=J<=255.

~86-

RIGHT$(x$,I) Returns right-most I characters of string (x$). - If
I>LEN(x$), then x$ is returned.

STR$(x) Returns the string which represents the numeric value
of x as it would be printed by a PRINT statement.

VAL(x$) Returns the number repfesented by the string x$. If
. the first character of x$ is not +, -, or a digit,
then the value 0 is returned.

In the above example, x$ and ¥y$ represent any legal string
expressions, and I and J represent any legal arithmetic expressions.

A.5 BASIC Error Codes

After an error occurs, BASIC returns to command level and types
READY. Variable values and the program text renain intact, but the
program cannot be continued and all GOSUE and FOR context is lost.

When an error occurs in a statement executed in immediate mode, no
line number is printed.

Format of error messages:

Stored BASIC statement XX ERROR
Imnediate mode statement XX ERROR IN YYYY

In both of the above examples, "XX" is the error code. The "YYYY"
is the line number in which the «crror occurred in the indirecct
statement. -

The following are the possible error codes and their meanings:

ERROR MEANING

BS Bad Subscript. An attempt was made to reference a matrix
element which is outside the dimension of the matrix. This
error can occur if the wrong number of dimensions is used in
a matrix reference. For instance, A (1,1,1)=Z when A has
been dimensioned DIM A(2,2).

DD .Double Dimension. After a matrix was dimensioned, another
dimension statement for the same matrix was enhcountered.
This error often occurs if a matrix has been given the
default dimension 10 because a statement like A(I)=3 is
encountered and then later in the program a DIM A(100) is
found.

-87-

CF

ID
NF

oD

OM

ov

us

/0

CH

AUV ZWN =
.

Call Function error. The parameter passed to a mathematical
or string function was out of range. CF crrors can occur due
to:

a negative matrix subscript (A(-1)=0)

an unreasonably large natrix subscript (>32767)

LOG with a negative or #cro argument

SQR with a negative argument

A°B with A negative and B not an integer

a CALL(x) Dbefore the address of the machine language
subroutine has been patched in

T. calls to MIDS, LEFT$, RIGHTS, INP, OUT, WAIT, PEEK,
POKE, TAB, SPC or ON...GOTO/GOSUB with an improper
argunent

Illcgal Direct. You cannot use an INPUT or DEF statement in
immediate mode.

NEXT without FOR. The variable in a HNEXT statement
corresponds to no previously mentioned FOR statement.

Out of Data. A READ statement was executed but all of the
DATA statements in the program have already been read, The
program tried to recad too much data or an insufficient number
of data values were included in the program.

Out of lemory. Program too large, too many variables, or too
many FOR 1loops, too many GOSUB's, too complicated an
expression, or any combination of the above.

‘ Overflow. The result of a calculation was too large to be

represented in BASIC's numeric format.. If an underflow
occurs, 2zero 1is given as the result and execution continues
without any error message being printed.

Syntax error. Missing parenthesis in an expression, illegal
character in a line, incorrect punctuation, etc.

RETURN without GOSUB. A RETURM statement was encountered
without a previous GOSUB statement being executed.

Undefined Statcment. An attempt was made to GOTO, GOSUB, or

"THEN to a statement which does not exist.

Division by Zecro.
Continue error. Attempt to continue a program when none

exists, an error occurred, or after a new line was typed into
the program.

-88-

LS

0S

SL

ST

™

UF

Long String. Attempt was made by use of the concatenation
operator to crcatc a string more than 255 characters long.

Out of String Space. Use the CLEAR X statement to allocate

more string spacc or use smaller strings or fewer string
variables.

SAVE/LOAD error. (From disk operation.) Other error message::
may also appcar from the File Control System. See Appendix
B.2.

String Temporaries. A string eXpression was too complex.
Break it into two or nore shorter expressions.

Type Mismatch. The left hand side of an assignment statement
was a numeric variable and the right hand side was string, or
vice versa, or, a function which cxpccted a string argument
was given a nuneric one or vice versa.

Undefined Function. Refercnce was made to a user defined
function which was never defined.

A.6 BASIC Random File Error Codes

ERROR

EV

BF

NO

AO

FS

RO

EF

co

NUMBER MEANING

No error vector. llo file error trap line number has
been s¢t with a FILE "T" statement.

2 Bad file name. Improper FCS file name.

y File not open. The specified file number is not
open.

6 File already open. The specified file number is

already in usec.

8 File size error. The file bLeing created with the
FILE WNY statement 1is too 1large or the file
parameters on the file being opened with the FILE "RY
statement are improper. .

10 Record overflow. Too many data bytes were either
read from or written to the current record.

12 End of file. Tried to read or write past the end of
the filec.

14 Cant't open file. The specified file does not ‘exist
on the specified device. (Possibly a. diskette or
hardware problem.) >

h

-89~

cC

RE

WE

16

18

20

Can't close file.

FCS READ ecrror.
problem.)

[FCS WRITE crror.
problem.)

The specified file
closed. (Usually a diskette or hardware problem.)

(Usually

(Usually

-90-

a

a

can

not be

diskette or hardware

diskette

or

hardware

e

B. FCS (File Control System)

B.1 FCS Commands

The File Control Systcm is entered by pressing (ESC) then D from
the keyboard, or PLOT 27,4 from BASIC. (Cnly the first threce letters
of the command nced to be typed in.) If (Esc), D is from the keyboard
then BASIC is terminated and must be rec-cntered by (ESC), E key
sequence,

The following definitions will be used to describe the FCS
commands:

() .denotes mandatory ¢lement;
[] denotes optional element and if not specified, will result in
the default type. ’

(Device name:) = [Device type] [Number] (:)
Device types are CD, MD, and FD for Compucolor Disk,
Mini-Disk, and 8" Floppy disk and number is either 0 or 1.
(Memory spec) = (Load address)(byte count) or (-end address)
AlY memory addresses are in HEX format.
(File Spec.) = (File name) [.Typel [;Version]
File name is any 6 c¢haracters. Type can be any three
characters and PRG is the default type. Version is 0 to FF
HEX. NOTE: After a defazult device type has been selected
only the number of the device is required. The defaul .
device for the COMPUCOLOR II is CDO.

COMIMAND . ,SYNTAX AND DESCRIPTION

cory COPY [Device HName:] (File Spec) TO [Device MNzme:]

[File Spec]
Copies the specified file, usually, to another
device. '

DELETE DELETE [Device Name:] (File Spec)
All File Spec options are required. Deletes the
specified file,

DEVICE . DEVICE (Device Name:]

Sets and displays thc currcnt default Device Name.
DIRECTORY DIRECTORY [Device Hame:]
Lists the directory for the default or specified
device.
DUPLICATE DUPLICATE (Device ilame:) TO (Device MHame:)

Duplicates all the files on one diskette to another
diskette on a second device.

&

“91-

EXIT "“FCS" ESC ESC or ESC E to return to BASIC.

INITIALIZE - INITIALIZE [Device Name:] (Volume MName) No. Dir.
Blocks
Initializes the directory on the diskette currently
in the specified device with the given Volume Name
and number of directory blocks.

LOAD LOAD [Device Mame:) (File Spec) [Low Addr [liemory
Spec]] '
Loads mernory with a program. Defaults to .LDA type
files written by the COMPUCOLOR II Assembler. (See
Section 10.2 for complete details,)

READ READ [Device Hame:] (Start Block No.) (Memory Spec)
Reads into memory from anywvhere on the diskette
. starting at any block and ending where specified,

without regard to program boundaries.

RENAME RENAME [Device llaue:] (File Spec) TO (File Spec)
Allows any file to be renamed without changing any
information in the file itself.

RUN RUN [Device Name:] (File Spec)
Loads and executes the specified program. The
default type is .PRG.

SAVE SAVE [Device Name:]) (File Spec) (Mcmory Spec) [Start
Address [Actual Address]]) .
Saves rnemory image in the specified file. The Stary -
Address and Actual Address default to the lower limit
.of the leirory Spec.

WRITE WRITE ([Device Name:] (Start Block No.) (Memory Spec)
Writes memory image to the specified block on a
diskette without regard to the FCS directory
information and file boundaries. CAUTION: It is
possible to destroy the FCS directory and file
information on a diskette with this command.

B.2 FCS Error Codes

The numbers to the right of the code meanings refer to the list of
error solutions that follows the code list.

MESSAGE MEANING

EBLF BAD LOAD FILE SPEC, 2
EBLK " INVALID BLOCK NUMBER, 2
ECOP ERROR DURIHG COPY, 1 & g

-92-

ECFB CAN'T FIND BLOCK, 3,

- EDCS DATA CRC ERROR, 3
EDEL DELETE ERROR, 1 & 3
EDFH DUPLICATE FILE MAME, 2
EDIR DIRECTORY ERROR, 1 & 2
EDRF DIRECTORY FULL,
EDSY DATA SYNC CHARACTER ERROR, 1 & 3
EDUP ERROR DURING DUPLICATE, 1 & 3
EFHF FILE NOT FOUHD, 2
EFRD FILE READ ERROR, 3
EFVR FILE WRITE ERROR, 3
EHCS 1IEADER CRC ERROR, 3
EIVC INVALID COMUAND, 2
EIVF INVALID FUNCTION, 2
EIVD INVALID DEVICE, 2
EIVP INVALID PARAMETERS, 2
EIVU INVALID UNIT, 2
EKBA KEYBOARD ABORT,
EMDV MISSING DEVICE NAVE, 2
EMEM MEMORY ERROR DURING READ, y
EMFN MISSING FILE NAME, 2
EMVN 'MISSING VOLUME NAME, 2
EMVR MISSING VERSION, 2
ENSA NO START ADDRESS, 2
ENVE NO VOLUME ENTRY IN DIRECTORY, 5
ERSZ - FILE TOO LARGE TO READ INTO ALLOCATED HMEMORY, 2 & 4
ESIZ DEVICE SIZES NOT SAME, ; |

-.93..

ESKF

ESYH

EVFY

EVOV

EWRF

EWSF

SEEK FAILURE, 1

SYNTAX ERROR, 2

VERIFY FAILURE DURING WRITE, 3
VERSION NUMBER OVERFLOW, X
WRITE FAILURE, 3

FILE TOO LARGE TO WRITE ON DISKETTE, 2 & 4

Dcsériptions of Solutions to FCS Errors

1.

Mechanical ?Problem--Jammed READ/VRITE head, loose disk drive,
internal I/0 connectors. Refer to COMPUCOLOR Maintenace Manual,

Invalid User _Input—-Incorrect cntry from user. Refer to FCS
Commands, Section B.1.

Diskette Failurec~-Try a different diskette.
Error Message is self-cxplanatory.

Diskette Not Initialized--you need to initialize the diskette and
possibly purchasec a formatted COMPUCOLOR blank diskette.

-9Y-~

C. CRT corianps

C.1 Control Codes

CONTROL
CODE

0

1

4

10

X

12

13

KEY

e

11

M

EXPLANATION
NULL-Has no effect.

AUTO -~ VLoads and runs a BASIC program named "MENU"
from the disk drive. :

PLOT - Enters graphic plot mode (seec plot submodes):
not allowed as a BASIC input character.

CURSOR X,Y. - Enters X-Y cursor address mode for
either visible cursor or blind cursor, used to go
from BASIC to CRT MODE when typed as a BASIC input

character.

Mot used.

Not used.

CCI - The following character provides the 8 bit

visible status word. Specifies Foreground,
Background, Blink and Plot. (Sce Appendix C.2)

Not uscd.

.HOME -~ Moves the cursor to top left corner of
display.

TAB - Causes cursor to advance to next column--the

tab columns are cvery 8 characters.,

.LIHEFEED - Causes a break in DBASIC execution of a

program, causes the cursor to move down one line.

ERASE LINE - Causes the cursor to return to the
beginning of the line and causes the complete line to
be erased. Also causes the DASIC input 1line to be
ignored.

ERASE PAGE -~ Causes the complete screen to be erased
and the cursor to be moved to the home position.
BASIC input ignores this character.

CARRIAGE RETURN -~ Causes the cursor to move to the
beginning of the line it is presently .on. Causes
BASIC input to accept the typed line and process as a
statement or input data.

-5~

14

15
16

17
18
19
20
21
22
23

24

25

26

27

28

29

30

W

AT ON - Tprns the AT flag on. (2x character height
and also stop bit.)

BLINE/AT OFF - Turns the blink bit and A7 flag off.

BLACK KEY - Sets foreground color black if flag is
off and background black if flag is on.

RED KEY - Same as above with color réd.
GREEN KEY - Same as above with color green.
YELLOW KEY -~ Same as above with color yellow.

BLUE KLY ~ Same as above with color blue.

. MAGENTA KEY -~ Same as above with color magenta.

CYAN KEY - Same as aﬁove with color'cyan.
WIIITE KEY - Same as above with color white.

XMIT - Causes data to be transmitted from the visible
cursor to the cond of the page or until an FF,00
sequence 1is found in refresh RAM. . Sends text
characters with a linefeed and carriage return at end
of each line. NOTE: Color status is not sent.

CURSOR RIGHT -~ Causes the cursor to move right 1
position. On BASIC input displays previous character
input. :

CURSOR LEFFT - Causes the cursor to move left 1
position. On BASIC input deletes previous character
from input buffer.

ESC - Provides an entry to the escape code table =-
must be followed by one or more codes for proper
operaton.

CURSOR UP - Causes the cursor to niove up one line.

FG ON/FLAG OFF - Sets the flag bit off. If followed
by one of the color keys it will set the foreground
to that color. Also, does not change input codes in
the range 96 to 127 that are to be stored in the
display memory, i.e. the shifted alphabetic
characters are displayed as shown in columns 6 and 7
in the COMPUCOLOR II character set in Appendix F. 1In
plot mode OR's "ON" bits.

BG ON/FLAG ON - Sets the flag bit on. If followed by

one of the color keys it will set the foreground tpmy
e

-96-

31

that color. With the FLAG on the shifted alphabetic
caracters 96 to 127 are converted into 0 to 31 when
stored in ‘the display memory, i.e. the characters
displayed are shown in coluans 0 and 1 in Appendix’F.
In plot mode XOR's "ON" bits.

BLINK ON - Turns on the blink bit which will blihk
the foreground color against the backround color.

C.2 STATUS WORD FORMAT

AT AG A5 | Al A3 A2 A A0
BACKGROUND COLOR FOREGROUND COLOR
PLOT BLINK
" BLUE GREEN RED BLUE 7GREEN RED

C.3 ESCAPE CODES

ESCA
CODE

0

10
1
12

13

PE

KEY

e

EXPLANATION

Used for terminal control--not available for any
other use.

Blind cursor node.
Plot via color pad.
JTransmit cursor X,Y position to RS-232C PORT.

Enters Disk File Control-System (FCS) with CRT as.
output. . :

Re-entry to DISK BASIC.
Sets full duplex mode, not functional when in BASIC,

Enters Disk File Control System (FCS) with RS-232C
PORT as output. :

Sets half duplex mode.

Causes a program jump to location 36864.
Sets write vertical mode.

Sets roll up and write left to right mode.
Sets local mode.

Sends all outpu; to the RS-232C PORT.

-97-~

>

14 N Set to ignore all inputs.

15 0. Not uscd.

16 P Not‘used.

17 Q Not uscd.

18 R Baud rate selection mode. A7 on = 1 stoﬁ bit, A7 off
= 2 stop bhits.

19 S Causcs a program jump to location 40960.

20 T Causes a program junmp to locatioﬁ 33280.

21 U Not used.

22 v Not used.

23 %] Initializes and transfers control to DISK BASIC 8001.

24 X Sets terminal to page mode and write left to right
node.

25 Y Test mode -- fill page with next character.

26 Z Not used.

27 (Visible cursor mode.

28 / ot used.

29 .]’ MNot used.

30 . Causes a program jumpd to locaton 33275.

31 = Transfer control to the CRT mode.

C.4 BAUD RATE SELECTIOHN

Number 1 2 3 y 5 6 7

Baud Rate 110 150 300 1200 2400 4800 9600

-98-

C.5 GRAPHIC PLOT SUBHMODES

DISK BASIC PLOT
or

RS-232C CODE

255

254

251
* 250
249
(2u8
247
246
| 245

” '(21111

243

(2H2

241

240

For

)
)

)
)

)

PLOT SUBIODE

Plot Mode Escape

Character Plotl

X Point Plot

Y Point Plot

X-~Y Incremental Poini Plot

X0 of X Bar Graph

Y of X Bar Graph

X nax of X Bar Graph

Incremeital X Bar Graph

YO of Y Bar Graph

X of Y Bar Graph

Y max of Y Bar Graph

X0 Vector Plot

YO Vector Plot

JIncremental Y Bar Graph

Incremental Vector Plot

incremental plot
direction codes below. '

C.6 INCREMENTAL DIRECTION CODES

| AX1 Ayl axe2 0yY2
AT Ab Aé Al A3 A2 M A0
+ - + - + - + -
80 40 20 10 8 | 2 1
~ s

-99-

OPTIONAL

. FUNCTION

KEYBOARD

F

F

F

F

submodes sce the format of the

15
14
13
12
"

10

1

0

incremental

D. INTERNAL FEATURES

ﬁ ; D.1 Key Memory Locations

38672 to 32767 = Screen refresh RAM

32940 = Points to maximum RAM used by BASIC
32980 = Points to start of BASIC source
32982 = Points to end of source and start of variables
32984 = Points to end of variables and start of arrays

; 32986 = Points to end of arrays

! 33209 = 0 to 59 seconds of Real Time Clock
33210 = 0 to 59 minutes of Real Time Clock.
33211 = 0 to 23 hours of Real Time Clock
33215 = User ESCAPE jump vector
33218 = User output FLAG jump vector
83221 = User input FLAG jump vector
33224 = User timer no 2 jump vector
33228 = External output port buffer
33247 = Keyboard FLAG.
33249 = FCS output FLAG
33251 = Input port FLAG
33265 = DASIC output FLAG
33272 = Output port FLAG
33273 = LIST output FLAG
33278 = Keyboard character
33279 = Keyboard character ready FLAG

n 33282 = Location of CALL(x) jump
33285 = BASIC output vector location
- 33289 = Number of characters on terminal output

33433 = Start of BASIC source codec
65535 = Maximum Amount of RAM

D.2 PORT ASSIGHMENTS

PORT # I/0 PORT ADDRESS
HEX

0 -F TMS 5501

10 -. 1F TMS 5501 Duplicate Addresses
20 - 5F Hot Assigned

60 - 6F SMC 5027
70 - TF SHC 5027 Duplicate Addresses
80 - FI Not Assigned

~-100-

PORT #

" 69

HEX DEC.
0-0
1-1
2 -2
3 -3
N -y
5-5
6 ~6
7-1
8 -8
9-9
A =10
B~ 1]
C-12
D - 13
E - 14
F-15
PORT #
HEX DEC
60 - 96
61 - 97
62 - 98
63 - 99
64 - 100
65 - 101
66 - 102
67 - 103
68 - 104
105
70 - 106
6B - 107
6C - 108
6D - 109
6E - 110
6F - 111

TMS 5501 I/0 CHIP

Read Serial Data in from RS-232C interface
Read Parallel Data from keyboard and disk
Read Interrupt Address on TMS 5501

Read Status on THS 5501

Issue Discrete Command

Set Baud Rate on Serial I/Q

Transmit Serial Data to RS-232C interface
Traznsmit Parallel Data to keyboard and disk
controls Disk R/W)

Load Interrupt Mask Register

Interval Timer i#1

Interval Timer {2

Interval Tiuer #3

Interval Timer il

Interval Timer #5

No Function

No Function

SHC- 5027 CRT CHIP

Load Register 0 - Don't Load
Load .Register 1 - Don't Load
Load Register 2 - Don't Load
Load Register 3 - Don't Load
Load Negister 4 - Don't Load
Load Register 5 ~ Don't Load
Load Register 6 - Roll Register#

Processor Load Command - Don't Use
Read Cursor X Registcr

Read Cursor Y Register

Issue Reset Commmand - Don't Issue
Scroll up 1 line

Load Cursor X Register

Load Cursor Y Register

Load Start Timing -~ Don't Load
Self Load Commad - Don't Use

WARNING: Do not output any values to the SMC 5027 CRT chip.

-101=~

(also

D.3 COMPUCOLOR Fifty Pin Bus

PIN DESIGNATION - PIN DESIGNATION
n 1 +12V 26 D2 BUS
_ 2 HR 27 A2
3 %] 28 D3 BUS
N T70 W : 29 A3
5 $2 (+12V) 30 D7 BUS.
6 g2 TTL 31 Al
7 o1 (+12V) 32 D6 BUS
8 17.9712 HHz 33 D4 BUS
9 SYHC .30 D5 BUS
| o RESEF 3% A6
11 -5V 36 DO 8080
' 12 45V 37 AT
13 GHD 38 " D1 8080
13 170 R 39 A8
15 A10 : 40 D2 8080
16 READY T Al
17 NO CONWECTION 32 D3 8080
18 NO CONNECTION 43 DI 8080
19 HOLD - ny A9
20 25 45 A3
21 AT1 46 D7 8080
22 DO BUS T A2
23 ‘A0 : u8 A15
2} D1 BUS ' 19 D5 8080

0 25 m o 50 D6 8080

D, RS-232C INTERFACE

CPU EDGE RS-232C SIGNAL NAME

CONNECTOR # PIH # - ANRD LINE

1 1 AA Protective Ground
3 2 BA Transmitted Data
5 3 BB Received Data

Vi y CA Request to .Send
ar T AB Signal Ground

15 2

0 . CD Data Terminal Ready

-102-

DECIMAL

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

+ 025

026
027
028
029
030
031
032
033
034
035
036
037
038
039
0lo
ol
ou2
043
oul
ous
046
ou7

4+ L=~ o~ QoD L IR

CHARACTER

NULL

AUTO

PLOT
CURSOR X, Y
(not used)
(not used)
CCI

(not used)
HOME

TAB

"LINEFEED

ERASE LINE
ERASE PAGE
RETURN

AT OH .
BLINK/AT OFF
BLACK KEY
RED KEY
GREEN KEY
YELLOW KEY
BLUE KEY
MAGENTA KEY

CYAN KBY
WHITE KEY
YMIT

CURSOR RIGHT
CURSOR LEFT
ESC '
CURSOR UP

FG ON/FLAG OFF

BG OH/FLAG ON
BLINK OM
SPACE

1

E. ASCII VALUES

DECIMAL

048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095

CHARACTER

e OO OV =W N = O

<C'—](/):UO"\‘JOZKL"NC—-HZC)"—]L'-‘JUO(:‘>@-QVIl A -

-
-

S N M N X

-103~

DECIMAL

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
13
114
115
116
17
118
119
120
121
122
123
124
125
126
127

CHARACTER

k4

l""--"‘N'~<XZ<C€*U)'3.D'OODE!—'?TL:-|—‘-D‘OQW(DQ-OO‘D’

DEL

	2012_04_15_20_39_32
	2012_04_15_20_39_34
	2012_04_15_20_40_20
	2012_04_15_20_40_23
	2012_04_15_20_40_25
	2012_04_15_20_40_28
	2012_04_15_20_40_30
	2012_04_15_20_40_33
	2012_04_15_20_40_36
	2012_04_15_20_40_39
	2012_04_15_20_40_41
	2012_04_15_20_40_44
	2012_04_15_20_40_47
	2012_04_15_20_40_49
	2012_04_15_20_40_52
	2012_04_15_20_40_54
	2012_04_15_20_40_57
	2012_04_15_20_41_00
	2012_04_15_20_41_02
	2012_04_15_20_41_05
	2012_04_15_20_41_08
	2012_04_15_20_41_10
	2012_04_15_20_41_13
	2012_04_15_20_41_16
	2012_04_15_20_41_18
	2012_04_15_20_41_21
	2012_04_15_20_41_24
	2012_04_15_20_41_26
	2012_04_15_20_41_29
	2012_04_15_20_41_32
	2012_04_15_20_41_34
	2012_04_15_20_41_37
	2012_04_15_20_41_40
	2012_04_15_20_41_42
	2012_04_15_20_41_45
	2012_04_15_20_41_48
	2012_04_15_20_41_50
	2012_04_15_20_41_53
	2012_04_15_20_41_55
	2012_04_15_20_41_58
	2012_04_15_20_42_01
	2012_04_15_20_42_04
	2012_04_15_20_42_06
	2012_04_15_20_42_09
	2012_04_15_20_42_39
	2012_04_15_20_42_41
	2012_04_15_20_42_44
	2012_04_15_20_42_47
	2012_04_15_20_42_49
	2012_04_15_20_42_52
	2012_04_15_20_42_55
	2012_04_15_20_42_57
	2012_04_15_20_43_00
	2012_04_15_20_43_03
	2012_04_15_20_43_05
	2012_04_15_20_43_08
	2012_04_15_20_43_11
	2012_04_15_20_43_13
	2012_04_15_20_43_16
	2012_04_15_20_43_18
	2012_04_15_20_43_21
	2012_04_15_20_43_24
	2012_04_15_20_43_27
	2012_04_15_20_44_34
	2012_04_15_20_44_36
	2012_04_15_20_44_39
	2012_04_15_20_44_42
	2012_04_15_20_44_44
	2012_04_15_20_44_47
	2012_04_15_20_44_50
	2012_04_15_20_44_52
	2012_04_15_20_44_55
	2012_04_15_20_45_13
	2012_04_15_20_45_16
	2012_04_15_20_45_19
	2012_04_15_20_45_21
	2012_04_15_20_45_24
	2012_04_15_20_45_27
	2012_04_15_20_45_29
	2012_04_15_20_45_32
	2012_04_15_20_45_35
	2012_04_15_20_45_37
	2012_04_15_20_45_40
	2012_04_15_20_45_43
	2012_04_15_20_45_45
	2012_04_15_20_45_48
	2012_04_15_20_45_51
	2012_04_15_20_45_53
	2012_04_15_20_45_56
	2012_04_15_20_45_58
	2012_04_15_20_46_01
	2012_04_15_20_46_04
	2012_04_15_20_46_06
	2012_04_15_20_46_09
	2012_04_15_20_46_12
	2012_04_15_20_46_14
	2012_04_15_20_46_17
	2012_04_15_20_46_20
	2012_04_15_20_46_22
	2012_04_15_20_46_25
	2012_04_15_20_46_27
	2012_04_15_20_46_30
	2012_04_15_20_46_33
	2012_04_15_20_46_35
	2012_04_15_20_46_38
	2012_04_15_20_46_41
	2012_04_15_20_46_43
	2012_04_15_20_46_46
	2012_04_15_20_46_49
	2012_04_15_20_46_51
	2012_04_15_20_46_54
	2012_04_15_20_46_57
	2012_04_15_20_47_00

