#Z INTERACT

Level Il BASIC Language

USERS MANUAL

Level Il BASIC Language

#Z INTERACT ELECTRONICS INC.

P.O. Box 8140 « Ann Arbor, Michigan 48106 « (313) 973-0120

PERSONAL COMPUTER
RETURN AUTHORIZATION FORM

Q CUSTOMER NAME SERTAL NUMBER

ADDRESS DATE OF PURCHASE

CITy, STATE, ZIP PURCHASED FROM

' REASON FOR RETURN: (PLEASE BE SPECIFIC)

THE FOLLOWING QUESTIONS MUST BE ANSWERED:
1. Did you receive all the items you expected? 1{ not, what was missing?

2. 18 there any apparent physical damage to any item? 1§ yes, please expfain.

3, Did unit function properly immediately aften nemoval {rom its packing carton?
1{ not, what doesn't wonk?

4. How Long was unit aunning before it failed?

5. Have you tried to Load all tapes supplied with unit?

6. List all tapes that failed to Load or run properly.

Signature Date
v_MOTEz THIS FORM MUST BE FILLED IN COMPLETELY AND RETURNED WITH UNIT BEFORE ANY
‘ .

REPAIR WORK WILL BE DONE. PLEASE RETURN ALL ITEMS RECEIVED.

1-811K

When LEVEL Ii BASIC is first loaded, the RAM not occuried
by BASIC is not cleared. This allows you to switch back
and forth between BASIC and Interact's program editor
without reloading your program. If you have no program
statements in memory when you load BASIC, you must type
NEW to clear the RAM or you will get OM (Out of Memory)

errors when you try to input commands or statements.

Copyright 1978 by Microsoft, Inc.
All rights reserved.

© 1979 by Interact Electronics, Inc.

)

2-2

w

'.AJL;J(»J
w N

CONTENTS

Tutorial
General Guidelines

Introduction to this manual
a. Conventions

b. Definitions

Modes of Operation

Formats

a. Lines

b. RFEMarks

c. Errors

Editing - elementary provisions
a. Correcting Lines

b. Correcting Whole Programs

Statements and Expressions

Expressions
a. Constants
b. Variables
C. - Array Variables - the DIM Statement
d. Operators and
2. Logical Operations
£. The LET Statement
Branching and Loops
a. Branching
1. GOTO
24 IF...THEN
3. ON...GOTO
b. Loops - FOR and NEXT Statements
c. Subroutines - GOSUB ard RETURN Statements
d. Memorv Limitations
Input/Cutput
INPUT, INSTRS
Jeovstick input
. PRINT
. OUTPUT
PLOT
WINDOW
DATZ, READ, RESTORE
h. CSAVE, CLOAD

0 oo

Qa 0o o

Functions

Intrinsic Functions
User-Defined Functions - the DEF Statement
Errors

4. Strings

1 String Data

=2 String Operations
a. Comparison Operators
b. String Expressions
c. Input/Output

4-3 String Functions

5. Lists and Directories

5-1 Commands

5-2 Statements

5-3 Intrinsic Functions
5-4 Special Characters
5=5 Error Messages

5-6 Reserved Words

Appendices

A. ASCII Character Codes

B. Speed and Space Hints

(@5 Mathematical Functions

D. Using the Cassette Tape Unit

E. Converting BASIC Programs Not Written for the Interact
F. Sample Programs

G. " TONE Parameters for Generating Music

0. TUTORIAL

This section serves as a brief tutorial for those who are unfamiliar
with computer programming. Important terms are defined and illustrated,
and some short LEVEL IT BASIC exercises and programs are presented.

The reader is encouraqed to load the LEVEL II BASIC language tape and
experiment with the examples, exercises and sample programs in this

section before continuing with the rest of this manual.

0.1 Computer and : Concepts

Your linteract Model One is a true computcr. Although offering somewhat.
smaller capacity than many usced in business and science, vour Model

One the same computational and logic carabilities as these

larger machii~s. By giving wvour Model One promerly-stated instructions

you =an use it to perform an almost hmitless number of tasks tc help

you and family rew skills, manage your home: or your own business

and have fun!

It will bhe for vou tc program your Model One if you have a basic {
of how a computer Inside ycur Model One are two
components of primarv interest—--the central processiag unit (CPU) and

memory. The «PU carries out your. instructions when you give your Model
Jne a zommand or use it to run a progr«:a. Memory is simply a place for
the CPU o store your instructions and data. Let's look more closely

at each of these comporents and their importance =o you.

The CPU works on the principle that an electrical current may . on or otf, just
as a light switch may be on or off. We can represent “"on” with a one and "off"
with a zero. The CPU circuitry itself is to produce results such
as addition and subtraction when fed combinations of on/off (0/1) pulses. One
way to a then would be to give it the right series of 0's and
1's and yet back vour answer in 0's and 1's. How teﬁious and cumbersome that
would be: Fortunately, no one has to program a computer that way. Or your Model

One computer vou us:* the BASIC programuing language instead of 0's and 1's.

Your LEVEL II BASIC language tape is really an When lo-ded
into vour Model One it allows you to enter words ar.i phrases that are
easy for you to read and understand. incerpreter translates =
words ard phrases into the seuuence o J3's and 1's ta qive
instruvctions to the CPU in a languagg it can understand. 1t o
translates the computer's answers from the computer's 's

1's-~into ours.

When you use BASIC onyour Model One you give the interpreter a list

of instruaction which describe how the computer is to accomplish wour
desired task. Usually your instructions will describe what the CPU
should do with that provide. The information be
numbers or text and is called _____. The CPU needs a place to store
your instructions and your data just s you nced a file folder, drawer,

cabinet or whatever in which to keep your rccords. This storage place

is called memory. Certain instructions and data that your Model une

always requires regardless of the task are stored in read-only memcry (RGM) .

This section of memory is protected such that it cannot x¢ changed or
cleared. Your Model One also has random-access memory (RAM). This is the
space -available for the LEVE'. II BASIC instructions anl your

programs and data.

The RAM is like a large shelf with many empty, unlabelled boxes. When

you place data intc RIM you need a way to explain where to put it and

where to get it when ycu need it again. To this you qgive the
data a name called 2 name. uso: thoe name to
labal a box" ~<alled @ storayge lccation in which ta jut your data.
The ais” mikesa note to about where the box car e
fcurd. When you to put some thing int~ rthe storajge location--
or take o of it--you use the varicble name and the

tells the ... where r find it.

In LZVEL II SBASIC ycu may choose variable names of any lerjth, as long

as with 2 letter. Many people lixke to choosc names whizh

longer names, that cach name begins with a different combinaticn

of two ... to avoid confusien about which storage location you want.

0.2 Direct Mcde Tutorial

Now that you have a basic understanding of how your Model One works, let's
look more closely at the BASIC vocabulary that your LEVEL JI interpreter

can translate. The interpreter can work in two modes of operation. You

may give it an instruction to be carried out, or executed, immediately.

These instructions are called direct mode commands. Or you may give it

one o more instructions to be filed away and performed late: at your command.

These instructicns are called indirect mode statements. If you type in

a line number and then an instruction, it is stored as an indirect state-
ment. Iflyou type in the instruction without a line number, it is executea
immediately as a direct mode command. We will begin in direct mode. You
might want to load your LEVEL IT BASIC language tape now, anc¢ try the commiands

presented below.

After you load your tape and the computer displays the "OK" message, clear
your TV screen by typing

CLS
followad by the 'CR' key. 'CR' stands for '"carriage return". The
interpreter does not do its translation until you type a CR. Everything
you type into your Model One should end with a CR. If you type an incorrect
letter but have not yet typed a CR, simply backspace over the error and
it will disappear. Then type in the correct letter and continue with the

line from the point of error. If you want the whole lire to be ignored

so you can start it over and if you have not yet typed a CR, hold down
the Control key and at the same time type a U. The line you ware typing

will be igriored by the computer but will stay on the screen.

Now let's input some data to work with. Type
LET A=5

LET

A and B are variable names which identify storaye locations in meiory.
As a result of these two instructions, the location labelled "A" now
contains a &; the one labelled "B" contains & 3. The word "LET" is optional--

you could also type "A=5" and "B=3" and get the same results.

Now _et's ¢ some arithmetic with these data. The PRINT keyword tells
the comput:r to disglay thinas on the TV screen. What you type after
the PRINT to lls your Medel Cne what to display.

FRIN'T A+B

PRIK A-13

PRINT A*3 ("*" mcans "maltiply")
AB as A/E)
(" " means "to the power". Here this means 53,

To produce tnis symbol on the screen, use the
up-arrow above the + sign.)

Your ’ should appear on your screen like the listing belcw. In the
listing, what you type has been urderlined; what the computer prints is
not. No underlines actaully appear on your screen.

K

PRINT A+B

8

OK

PRINT A-B

PRINT A*E

PRINT

e

Qcro. g your

A

First s uarce threoc o aet 9. -om

Now calculate and fill in your -ans

above rulesin your calculations.

One using the direct node

Your
.
o4
15
4*5
You - utes'm
({0 s
g o
nls the 2§
-
1= Ggeet ok <13
8
i
S
PO - .
- —eedteea AN
N U2 B

wers tc the probhlems

Then check your

3

~

listed in the tuble.

Answey

(o

alim . LR

[S3

using the

on your Model

PRINT 3*4-2 "~ 3

URINT 2:4*5

TRINT 47%°:2

by using

SN 1()

Jow us

oY statement

T

Problem Your Answer BASTC Direct Mode Commanc

(243) *4+2 PRINT {(2+3)*%4%2

(2+3)* (4-2) . PRINT (2+3)*(4-2)
2

((2+3)*4) PXINT ((2+3)*4)"2

In the exercises you have done so far, ycu asked the Model One to
calculate an answer and print it righs away. To do this you used the
PRINT command. VYou could just as &asily have asxked it to a new
storage location aame and store the answer to the calculation. To do

this, ycu would use the LET command:

LET C=A+B

L=T D=A-B
arnd so ¢.i. The Model One would ccmpute the and store them fox
later in printing and making cthner calculations, using the names ve
give to label the storage locations which the
There are several ways in addition to the LET cormmand tc put ir .o
emory. These other methods are not fully here. You are
encouraged to read about *then in section 2-3 oI this l2r vo:

are comicrtable wi*n the material in this tutcrial sect.on.

methods for inputting data are sumracized

tion is that your valu2s ir ore that you

locate, verify and

When more than one set of parentheses the inside of the
innermost ‘is evaluated first, the next and : on.

2. Data may be accuepted frem the kevboard while an indirect mode program

is rurning using the INPUT statement or the INSTRS function. This
llows you with your program as.it runs, the

order in which instructiers are and/or providing diflerent
data values to use in calculations.

3. Data may be loaded into memory frcm cassette tape using CLOAD*.

4. Data may be accepted in%o memory from the joystick controls using
FIRE, JOY and POT. You can write your own games using these &rd other

" statements such as COLOR and SOUND.
0.3 Intrcducticen =0 Indi Mod =2

Up to this point you have been using your Model Cne in direct wod:.
You typed in commands which were executed immediately. Direct
is for quick _ experimentation and for

.rect rode programs, This section explores the Model One's
mode capabilities.
Indifect mode is ased te define and ex;:ﬁte a series of instructions
called g% toments. Thes2 statements forri what is typically called a
wrogram. The dirxect mode commands and. operations you used in the
previous section also work in indirect mode. To create and run an indirect
rmode ,_____m you:

1. NEyre ;n the NEW command to tell the Model One to clear its memory

for new entries.

()

2. Type in your instructions .r2ceeded by line nwiders. & iin
number mayv be any whole rumper (integer) bectween 0 arad 55529,
it is important to rememke. that unless you tell the computer

otherwise, statements arc exaecuted in line nurmu,:»r order. It is

a good idea to separate successive line nunbers by 5 or 10

to leave rcom in case you wont to add lines later on.

3. @se the LIS? command to d;_play.yuur instructions in lineln;mber
order. Usiﬁg the LEVEL IT BASIC'Refe:en:e Card or this manual
verify that your instructisns are correctly zntered. if not,
uorrect the errors as follaws:

a.. To delete an entire lime, type tlie linae mziber te b deleted
followed by a CR. Altlhough the line mav/ rurain alislayved
On your screen by a pricr listing,itc has zoen reroved

CuY graw and will not ap;j in any later listings.
your progral and will not appear in anv listings

o

70 change a line, type the line rumker to %o changed follouasd
by the entire correctad statement £oo *nat line. Althouzh
the line may remain inceorrectly displsved .u pricr listing

on ysur screen, it has heen corr:zczed In your program and

v

r sistincs.

{

will appear correctly in any lat

o. To &édd a new line, tvye in an erpropriate unused line nunwer
followed by tne rew statément for than 1i>. Remauber
wher you pick the ﬁew line rumbexr that st..cments are exzcuted
in line omber order. The new line will agpear

in its proper place in wny later listing =Y the program.

4. Type in = RUN command to execute the progran.

0.4 Indirvert

to

thera mwmauy k

a EASIC program f

We ow w

which we

G

lca:

o i

-1

F4

comput2

you:

11l over the

EVEHLAgD

e

i

il

This created twelve BD slots which we may reference

the subscripts 1,2,...,11,12 to make the names BL(1), BD(2),..

BD(12).

using

.30 (11),

Now get out your checkbook or other records of vour electric Or

use the numbers provided in the example in your program.

the TV screen with the CLS command.
the One you

first part of your program as follows:

Statement

r

10DIM BD{12) Reserves

20BL(1;= 75.86
30BD(2)= 79.13

40BD(3)= ©3.32 storage
50BD(4)= 25.58 te use your
60BD(5)= 20 16 ameunt
70BD(6)Y= 11.59 for each of

90BD(8)= 11.43

110BD(10)=29.74
120BED(11)=46.66
130BD(12)=57.92

Now toc compute average bill, woe'll
telling the computcr to add the twelwv: months
easy way to

defines . series i
A control variaklae used to

performed.

begin typing in a new progran.

Statements
tric bill
locar'.ons. IE you

vooadd un

instructions 13 to usc a [A,.
which te be reito

how many times &

First clear

Then type a NEW command to tell

Type in the

storage

pill data

20-130 wuts youz elac-
At 2 BD

oW substituT:
DI SEBE2 L ilis
o

throigh

Examples

1. FOR I=1 TO 12

The control variable ir this loor is named I. It is common programming
practice te use I, J, K, L. M or N as names for loop control variakles.
This FOR statement defines the begihrning of a loop which will be performed

nce for I=2 and so on up to 2nd including I=12.

1
]
-
(0]

12 times--once for
2. This example shows an entixre loor:
10DIM A(10)

2070OR I=1 TO 1C
30PRINT A(I)

4INEX™T 1
Statoment "2 reserves ten storage tions fcr the ary=2v varieble name ! i,
The 32 are individually as 201), A(2)...A(9). 7(12). Statement
20 ¢ _ the beginnine of a iopp which is performed ten times--cnce

for I=1, cnce fox I=: and =0 on up to and including I=10. Statarment 22

is "inside the lcop" =n it wlll be ten times. The first time +hrough
the loop. statement 3C the stored in lccation A(1}.

second time the it prints the data in A{2). Th= . ccntinues
through I=10, .prin-ing the from location in the A time

thrcugh the loop. Statement %39 defires the end of the lccp.

In our electric bill an we can ‘ise a loor which i= perfor.aedé
to add up twalve months of electric bills. ZXach time thwough
the loop, we add i-. =no+*i.__. month's Zata. in the followinc statements,

addinc them te your =icgram:

Statement
14CFOR I=1 T2 12 Initiates lcen to be performed 712 times.
150SUM=SUN+2D (1) Each time the loop arother

monith of electric bill data is adcéed
into the rurring total which is kep-:
in ¢ called sSUM.

160NEXT I Defines th2o end of the loop.

is to divide 3y 12 and print the resulting average.

Now all a.TE

T702"AVIRAGE=";8UMi 12

Fa
o
]

exanple:

.
(S

and then will

usa bl

-iay

-,
i

disting ¥ where it 1

SO,

liscir g

10DIM BD(12)

20RD (1) =
308BD(2)=
408D (3) =
30BD(4) =
60BD(5) =
70BD(6})=
80BD(7) =
9CeD(8) =
100D (9) =
110BD(10)

130BD(12)
140 R

I
170FRINT
If +here
in

your

Wheto was your average

75.836
72.13
..22
35.58
25.16
“1.59
.02

74

1.2

12
159SUM=SUM+ED (1)

‘ERAGE " 3UiM/12

If you supplicé vour cwn Zata, your
electric bills should appear in lines 20-130
for the numbers showr in +his

{The Mcdel Cne automa 1w sukz-icutes
for ? ir your listing.)

ac. errors in your listing correct them using tne ~cthols das.

am

W-en the listing appears to . ~worx-c:,

0.5 Review

Before going on, let's pause a minute and summarize the things we have coverec
so far. If you are unsure about thsz meaning ¢i any of the words, symbols
or rules below you are encouraged to experiment some more with .tns exercises

and examples in sections 0.1-0.4. If you are coumfortable with the lists,

go on to section 0.6

A. Computer Concepts and Terms

array variable .) loop
Central processing unit (CPU) . m&mory
control variable modes of operation
data program
direct mode commands RAM
execute =OM
indirect mode z age lccation
interpretexr string
line wusmaumes vaolable name
B. LI BASIC
CLS LET NEXT or ?
DIM LIST NZ rU
FOR

C. Editting and

clear’ -~ & ine - 7- fine H Fhen CR
Control/Q $7arfs adding &
Control/3 stepr /-'S"f changing a
COI’IE‘[Ol,/U iehaves ul\olg)ine

€ = Type line # Heon new st teent (new lint *)
Tl Y line ¥ Fhoaa new sf,fq,mg.n(f"
D. Operators and Rules

addition
- negation, suotractiasn

(prirts as a slash mark)
exponentiation

Rules for order of operaticn, use of narentnescs.

C) s

0.6 Interactive Input

In your first computer program, vou .. vour data in program statements
like

BD(1)=75.86
When the computer executes this stafement, it =tores one month of 2lectric
bill data in storage location BD(1). As was mentioned,another way to put
data into memory is tc enter it.while the program is running. To o this,

the INPUT statement is

n
=
17}
197
(o)

Let's start writing a new version of the electric rill mrogram.

first is to mak . the input _ ., Tret is. use the

.
o
2

statement s2 that ycu enter data the comrvuter asks for .t
the program is running. _._ _. is not used as a direct mode camani vt

only as ar ’ndirect wole statement.

The form the INFPUT statement is

INPUT ["strinc';]-<variahle name>
This way of showing the INPUT ztatemen% is called a _ - form bzcause
it describes many ways %o INPUT. The brackets are us2d to
show . . That is¢, vou mav us2 without using a string in quotes
and a semi-colon. angle rackets denote a paraﬁeter. When you use
a statemert, you .. tute & value for the parameter that is appreopriate

for your s:ecific t In the case ¢’ INPUT you would supply the name

of the you want to enter in of <variable name>,

a. 10 INPUT A
When this statement is executed the Model One a gquestion mark
on the TV screen. Then it waits for you *o type a value followea

by a CR. It stores the value you type in a storage locatica labelled

A.

h. 10 INPUT "NUMBER";A
The Model One prints
NUMBER?
and waits until you type in a value and a CR, then stores the valuc

in a location named A.

=

<
(0]
o}

an optional and

fu

in &, INBUT statement,
the . One vrints =he string then a gquestion mark then for ycour
input.’ L you use a String 1T princs 2 guasticn rark oerly,

waits for your input. In either cuase, it date VoL in the

storage you name in the INPUOT

Now clear your TV screo:, tyoe in a NEW coxmard and start your new home
budget progrart by typing in the below.

Statemer.:

10DIM L(12) Reservsas 12 storage locations
23FOR I=1 TO 12 Initiates a loowr to bo performed 12 times
30INPUT D(I). Frints a mark and accepts

data for cre in the D array

eazh time the loop is performed.

40NEXT I the loop by line 20

using interactive input to enter a lot of data it is usvaily a
idea tc give yourself a chance to fix any mistakes vou may have made. Let's
do that as follows. First, we'll print nut all twelve numbers 2long with a
sequence number to each. Then we'll ask if thore are any changes.
if there are, we'll make them. If not, we'll coapute bill.
Before we enter program statements to do this, we'll nead to introduce two

new concepts--conditional <lauscs and subroutines.

0.7 Conditional Clauses
When writing computer programs it is frequently necoessary to test o seo

if a particular condition holds true or not. For example, in our

example we will want to ask if there are any If
is "yes," we'll edit If is "no." we car uo ¢ oand
our averace. That iz, we T to test the answer to a ’ Peooson JF
it's a "yes" or a "no." rinds cf kests that you mav nred to rmake oro:
b. Is it less than 2
Greater tha ¢
That's a fancy something
to
<> not ceual tc
< less than
> yreater then
“=Qr=s lcss thar or to

greatey thoan or emaal to

Relational operators are used to Lt Clauses. The form

of a conditional clause is

IF<expressionl><relational

a. IF SUM<O0
This clause tests to see if the value storad in the 5UM locaticn is
negative.

b. IF A>=B
'This clause tests to see whether or not the value in iocation A is
greater than or equal to that in B.

(Jg IF A"2>10%B
This clause tests to sec if the sguare <f the value in A is greeter

than 12 times the value in B.

A conditional clause is either true--has a value equal to -1l--or T is
false--has a value equa} to zero. If the clause is true, ycu wani to
do one thing. If it is false, you want to do something «=lse. There are
several ways to us: a conditional clause to control Gets Jone next.

The one we will use is the IF...THEN statement:

If the cerditional clause ycu substitute for <conditicn™ 1is truwo, the
Yy ,

clause is

rh
Ui
(L

Model One performs the statements following THEN. I

it goes to the next line, skipping the statements atter THEN.

20

10IF A<0 THEN PRINT "ERROK":STOP

20C=A/B

If A is less than zero the Model One display the word "ERROR" on the screen
and then stop. If A is greater than or equal to zero, it will compute

A divided by B and store ths result in C.

Note the colon in line 10. may use a colon to put more than one
BASIC statement cn any line. You may put as many statements on a line
as you want as long as they are separated by colons and the total length

of the line is not more thar 72 characters.

iet's expand row to include displaying the input data,
if there changes, *“esti.g the answer, and making a decision basead

on the answer. Typre in the following statements, addirg them to your

program:

Stetement Explanation

50FCR I=1 TO 12 Initiates a loop

60PRINT I;SPC(2),. .} Frints current value of I (our
sequence number) then 2 spaces then
the value in D(I) each time
through the loop.

70NEXT I Closes the loop

phoed s ‘,, . ’/“
80INPUT "CHANGES";AS 5‘”f‘ =t ¥ Prints "CHANGES?" a2nd waits for

AT - (0] e

an answer ©o store in AS

90IF ‘A$="YES" THEN GOSUB 200 Continues at line 200 if answer was YES

[y}

In line 80 you recuested that the

labelled 25. Variable

variables because they label locations for tex:t {ietter)

of numbers. The answears "YES" and "NO" are text,

with a label ending in a dollar sign.

that e<d with a dollar sign

so we need a

are called

input be stored in a location

data instead

location

In line 0, you' that if the answer is "YES" the Model One should
go execute a subroutine beginning at line 200. The n xT section . 1S
subroutines and develops the one we nreed for our program.
Now enter these statements:
Statem:ant Explanation

I=1 TO 12 loor to total 72 Bf oot
110LET @ Accumuiates total
120NEXT I Closes loop.

Prints average pbill.

140END Marks the end of the program.
These statements are performed only after the data arz verified to be correct.

That is, only after you type NO wher. asked "CHANGES?T"

Subrouzinsas

A is

a

of the program. subroutine statements

a. Not really central to the task at hand.

entries to INPUT statements,
is not central to computinyg an

perfect typists we wouldn't need to edit

For cexample editing

very essary
r 211, if we ware

input at all!l

cf program stacements contained within the rest

usually perform a task that is:

b. Performed at several times at different points in the

Rather °° tvve in

they are needed you type them in once instcad.

to them as a subrcutine when vou

To initiate executicn of a
GOSUB < linenumbor:
where <linenumber> gives the first line of
Model One
processing line by line until it finds a RETURN
causes the 'Model One to c¢o back to the statement
GnOSUB.
Example
50GOSUB 60: "DONE" : 3TCP

50FOR I=1 TO 10

80NIXT I

90RETURN

at line o0.
on the screen one Ly one.
the word DONE an then suous.
subroutine for our

wet's write the

you already have the statemont

That means the sgnbroutine nust e

is as follows:

immediately

displays the

Tnen the Medcel One opos

Line 200.

nrogram.

same series of statements at ezuh point

Then you refer

you use the statenont

subroutine series.
skips to that line and continues from that

statement. The RETURN

atter the

numbers 1othrough 10

back <o lire 50, prints

NOwW .

The strategy for the sub-

In the main program we printed & l1ist of the input data items with -the
I value which tells where each item is stored in tke D array. So we'll
use that same I value to identify which moir:th of data needs to be
changed. Type in the folliowing statement, wﬁich gives you a chance to
type in an I value when the subroutine is run:

200INPUT "SEQ.NO.";I

The following statement allows you to enter tre new data value for 5(I):

210INPUT “"WEW VALUE";D(I)

Now ;e need to know if there are any other changes. If there ars
we want to go beck to line 200 and get another value for I:
220INPUT "MORE CHANGES'";B3

2301I¥ B$="fES" GOTO 20C

240RETURN

Line 230 uses IF...GOTO statement. The IF...GCOTO is very

to the IF...THEN. Th2 IF...THEN gives sta:zements to gperform if *he stated.

condition is true. IF...GOTO gives a line number at which to continue
1f the stated condit:on is true. If the ceondition is false, the Mcael
One continues with the next iine after the IF...GOTG. In this case,
unless you enter YES to the "MORE | tr.e Model One

to the body cf your program at line 100, which follows the GOSUE. If
you answer YES you are asked for another = to specify another data

value to change.

Let's look at the budget -program.

use Control/S and Control/Q as needed to stop and start

your statements the listing bhelow:
10DIM D(12)

20FOR I=1 TC 12

30INPUT D(I)

40NEXT I

50FOR I=1 TO 12

60PRINT I;SPC(2);:D(1)

7ONEXT T

S80INPUT "CHANGES";AS

®0IF AS="YES" THEN GOSUR Z0C
100FOR 1=1 TO 12

110LET SUM=SUM+D (I)

120NEXT I

130PRINT "AVERAGE=";SUM/12
140END

;200INPUT "SEQ.NO."; I
210INPUT "NEW VALUE";D(I)
220INPUT "i.RE CHANGES" ;RS
2301F BS="YES" 209
240RETURN

Your preogram porforms
i

of electric

Type a LIST “ommand and

the listing. Check

Accepts Bills froum you while tha program
puts the data into the array labelled . which has 12 slots.
2. . Next it displays the 12 numbers you enter.d on the aleny
3. Next it asks if yor wanu te maxke anv changes. Tt vou answer
YES, it proceods tr the coditing subroutine. If you answer
(or proeps YES) i+ totals tie 12 numpe s and prints
the then stops.
4. The editing.subroutine witich item you want to change by typing
SEQ.}NO.?
NEW
to yet the ‘ for DIT). Ther it asks if thero 2 mor
cha ges. L& you cr YES LU usks for a new number and a

value. Any other answer causes :i1odel One to return to the main grogram,

compute the sum, print th2 average and stop.

If your program statements appear correct type in a RUN command and try out
the program. If there are errors use the mechads described in saction

0.3 to fix them, then type the RUN while running the program
make sure to make at least cne mistake so you can try out yous =2diting
subroutire. After you are Jdone o on to, the nert section

to see how to save your program on a cassette tape. Bz sure tTo vy

your Model ‘®ne cff ‘until you have saved your program or tape. Wien ,ou -urn

thie Model One off, whatever data values and prcgram sta~amen<ts ore in mem-

ory are lost.

0.10 Saving Programs on Cassette

You may save youlr program on a blark Data Tap= by following the step: listed

Lelow:

1. fnsert a blank Data Tape intc the cassette dirive. Depress the REWIND
putton cn the tape unit.

2. Type in a REWIND commard. When the tape finishes rewinding nress any
key on : keyboard to indicate that rewinding is ccmplote.

3. Depress the REZD and WRITE buttonz simultaneously o the tape unit.
Pick a name uw to five characters long fcr ycir pregram. vie 1n the
word CSAVE--for Cassette Save--followad by ycur program namne in cuotes,
for example

CSAVE "BDGET"
The tape should begin to turn as your is written onto the uvape.

When the Model One types "OK" your program is saved.

To load the program from tape later on, follow the steps listed below.
Please note that whzen ycu load a program from tape it automatically erases
_any program statements and data values currently in memory.
1. Load the LEVEL II BASIC language tape if you have not already done so.
2. Insert the Data Tape containing vour program. Denress the REWIND
cassette button and type a REWIND command. Typ2 any key on the keyboard
when rewinding is complete.
3. Depress the READ cdssette button. Type ir the word CLJAD--fcr Cassette
Load;—followed by your progyram name in quotes, for example
CLOaD "BDGET"
4. You should hear the b2eping sounds of a loading program. To Take
certain your program lnaded correctly type in a LIST command =fter
the Mcdel One the "OK‘-I message. Check the listing to make sure
it aprears complete 2nd correct. If so, type'a RUN command tc execite

your program.

0.11 Raview

Let's review what we have coered since section 0.5 wher we did the last
review. If you are unsure about the. meaning of any cof the words, statements
or symbols listed you are encouraged to experiment some more with

the exercises and examples in sections 0.6-0.12. If you are comfortable
with the lists, try some of the sample programs in F or continue

with the rest of this marnual.

a. Computer Concegpts ant Terms
conditional clause parameter
general form relational operators
interactive string variables

options

LEVEL II BASIC words

CLOAD I RETURN
CSAVE 7. ..GOTO 52C
END IF...THEN STOP

- GOSUB INPUT

. Relational Operators

equal to <=Qr= less thar or egqual to
< not egual tc >=Qr=> greater than or ecgual
< less than
> greater than
Other
-Use of colon(:) to separate multiples or. one line
-8aving prograins.on .. loading vroorame from tape

~Usirg "?" as an abbreviation fcr "PRINT"

to

1~ GENERAL GUIDELINES
1-1 Introduction to this Manual.

a. Conventions. TFor the sake of simplicity, some conventions will be
followed in discussing the features of the BASIC language.
1 Words printed in capital letters must he written exactly as shown. These
are mostly names .of instructions and coryands.

’

2. Itemrs enclosed in angle f<>) must he suvplied as explained in the
text. Items in square brackets ([]) avre optional. Items in btoth kinds of brackets,

[<w>], for example, are to be supplied if “he optional feature is used. Items

followed by dots- (...) ‘mav k2 repeated or deleted as necessary.

3. Shift/ or ’ by a letter means the character is tyned vy
holding down the or Centrol kev and typing the indiczated le+tter.
4. All punctuatizcn must be supplied.
z. Definiticons. Some terms which will beccrme imporitant are as £2ilows:
B character: all and numerals - together ars called

alpharumeric characters.

Carriage Refers to the kev labeled 'CR' <rn the termiral which causes
commanids, statements, or data to be entered into memorv, and priﬁting to pegin on
a new line on the screen.

Command Level: After RASIC prints 2K, it is at the command level. This
means it is ready to aczept comrmands.

Commands and Statements: Instructions in FASTC are loosely divided into two
classes, Commands and 3. Commands are tructinns used conly 1in
direct mocde (See Modes of Nperation, soection 1-2). Some cotmands, such as CONT,

may only he used in direct mode since they have no meaning as program statements.

But most commands will find occasional us: as program Statements are
instructions that are normally used in Some statements, such as
DEF, may only be used in indirect mode, kut most may also be issued as direct mode
commands .

Edit: The process of deleting, adding and substitutirg lines in a program.

Integer Expression: 2n expression whose value is truncated to an integer.
The components of the expression need nct be of integer type.

Pixel: A pixel is the unit of measure for the TV screen. The screen 1ig
approxiﬁately 112 pixels wide, and 77 pixels tall.

Reserved Words: Some words are reserved by BASIC

rn
(o]
tg
[
02
[

as s»tatements and
commands. These are called reserved words because they may not be used in

or function names. Ss& section 5-6.

String Literal: A string of characters encloesec by <cuotation marks (") n
is to Iy input or output exactlv as it apwears. The marti o ire
2f the string literal, nor may a string literal contain guntiaticn xar<s. (""¥I,

is not legal.) Blanks within the quotaticn marks are significant.

Type: The "type'" to refers tc the process of ent2ring informaticn into
the computer the kayboard. The user types, the computer prints. "oata
refars to the of data as numbers or

Modes of Operation.

BASIC provides ifor operation of tre computer in two diffesrent rodes. In the
direct mode, the statements or commands arg exacuted as they are ir.to the
computer. Fesults of arithmetic and logical cperetions ar ard stored

for later use, but the instructions themselves ar= lost after executiosn. This mcde
is usetul for and for using BASIC in a "calculator" mode Zor cuick ccm:

‘tations which do not justify zhe design .und coding of complete programs.

In the indirect mode, the computer executes instructions from a program
stored in memory. Prégram are entered into memory if they are préceded by
a line number. tion of the program is initiated by the RUM command. Lines
are always executed in numerical order, regardless of the order in which they are

input.

1-3. Formats.

a. Lines. The iine is the fundamental unit ¢f a BASIC proagram. The format
for a BASIC line is as. follcws:

nnnnn <RPASIC statement>[:<EASIC statement>...]
Each BASIC line begins with & line numher. The lincé nurher indicates : order in

which the statements are exccuted in the program. It zl=zo provides for hranching

linkages and for editirc. nurbers must ha in the range § to 53529
pvrogramring is to an cf 5 or 1@ khetuzen surccossive line
numbers to allow for

Following the line numter, one or more . statemonts are writte . The

first word of a statemen* indentifies the operations to e performed. The list of

argume. ts which follows the . word serves govera. Tt Tan
contain the data or variahles : are to he operated upon hyv the statenment. In
scme important instructions, coeration to he performe’ deponds uncn conditions
or optiors specified in the list. ’ of staterwnt will be considered in

detail in sections 2, 3 and <.

hy colons (:). 2Anv of statements can ke Zeined this wav provided tnat the

line is no mere than 72 . lona.

b. REMarks. In many cases, a przdram can be mcere =asily understood ii it
contains remarks and explanations as well as the statements of the proper.
In BASIC, the REM statement allows such comments to be included without affecting
execution of the program. The format of the PEM statement is as fcollows:

REM <remarks>
A REM statement is not executed by BASIC, but branching statzments may link into
it. REM statements are terminated by the carriage retuxn or the end of the line

but not by a colon. Example:

162 RFM DO THIS LOOP:FOR I=17T01f8 -zhe FOF statem=nt will nct
be axecuted
1791 FOR I=1 to 1%: REM DO THIS LOOP) -this FOR statement will

be execu=ted.

c. Errors. the BZSIC intervretsr detects an error tha:z willk
program to b=z term;nated, it praints an errcr messagz. The =srror message formats
in BASIC are as follows:

Direct statement ?X¥. ERROR

Indirect statement ?2XX ERROR IN nannn
XX is the error code or message (see section 5-5 for & lis% of errcr codes and
messaées) and nnnnn is the line number where the error occurred. Fach statement
has its own particular possible errors in addition to thé general errors in
syntax. These errors will Be discussed in the description ci the individual

statements.

1-4 Fditing - elementary provisions.
Editing features are in BASIC <o that mistakes can be corrected. ard
features can be added and deleted without affecting the remairder of the program.

If necessary, the whole program may be delieted.

a. Carrecting lines.

instead of typing a
been entered, type thc

line that is already

A line being typed may be deleted by typing Control/U
return. To delete an entire line that has already
nurber followed by a carriage return. To correct a

in, type the line number followed by correct

information. To addé a new line, pick an appropriate lin2 number, and enter it

along with the new informaticn. Rememker that statements are always exscuted in

lire number order.

b. . Correcting whole progr: "he NEW cemmand cauzes the entire current

program and all variahles to be delete?. NEW is generaliy used <o clesar memory

space prior to entering a new program.

2. STATEMENTS AND EXPRESSIONS.
2-1 Expressions.

The simplest BASIC expressions are single constants, -variables and function
calls.

a. Constants. BASIC accepts integers or flcating point real numbers as

o

constants. It accepts string constants s well. See section 4-1. .ome exampies

of acceptable numeric constants follow:

123
3.141
.g.g436
1.25e+45
Data input from-the terminzl ntmeric constants in a may have rumber
of digits up to the length or & line (se- secticn 1-3a). Howsver, only the first
7 characters of = i tne dccimal point) are sicnificant and tha

seventh digit is round>d up. Therefore, the
PRINT 1.234567390125
procduces the following outnut:

1.23457
OX

_The format of a number dizplayed using PRINT or OULEIT is determined by

following rules:

1. If the number is negative, a minusz sign (=) is printed to the lzft of the
number. If the iz positive, a is printed.
2. If the value of the numbher is an = in the vange ¢ to 2999299,

it is printed as an

1

2. Iif the absolute of the number is real, and ¢woater than or egual o 7]
and less than or equeai to it is prirtced 5. Tixed poinit anotation with hHo
eéxponent.

4, 1f the number dcec not fzli inteo categories Z or !, szientific notation is u

sed.

The fofmat for input output <f constantsz in scien=ific notation is:

MX. YXXXXESTT
Where M is the of the mgntissa and the X's dre the digits of the mantissa.
The E indicates the start of the exponent, the S the sign of the =oxyponent, and
the T's the of the axponant. exponent must ke bhetween -38 end +38. Tha
largest number that may b2 represented in BASIC is 1.7C141%+38,the smallest positive
numper is

Examples:

BASIC Scientific Notation Notation Nurber
1.5684E+f6
-1.5684E+#6 (-1.5684)x (18°) -1,358,400
1.5684E-3 ’1.56%4)x (1073) a. -
-1.56R4E-£3 © (-1.5684)y (1073

In all formats, a it} ted zfter the .. BASIC to if the
entire number will {fit on current line. If not, it issues a !
and the who..e o the rext line,

b. Variables

to it. The value oI = arviabl: mav he assigned expl icitly by the preosrammer or may
be assigned as the :o-ult of -alculatieors in a program. #2fore a is
assigned a value, value is . tc ke (numbers) or hlanks (strings).

String variables have special rames. Zoee section 4.
A numeric variable name may bhe any length, but any alphanumeric characiers

after the first two are ianored. The first character mist be a letter. No reserved

35

words may appear as variable namc:z or within variable names.

examples of legal and

Legal

A

zZ1

The firs
or session (di
c. Arra
oy the same na

element of the

to whole m
variables, or
VV(<subs

where VV is a°

may be enclosed in
many dimensions as
Subscripts must be

Examples:

A(5)

ARRAY (I,2 J)

Zllegal BASIC variakles:

Illegal

The foliowinc are

%A (first character must

be &lphabetic.)

LET

two characters of all variable names in

ect mode) must be unijue.

Variables. 1t is often advantageous to

In matrix calculations, for example,

seraratelv, but it is convenrient

a unit. For this BASIC

rrays. The form of an array variakle is

ript>[,<subscript:...])

ariable name the subscripts are inte

parentheses cr scuare brackets. An

can ke definad in a single DIM state

between 0 and 32767.

The sixth elemaent
element is A(fg).

The address of th
dimer,sional array
evaluating the
at the time of
and truncating
J=2,

th
to

36

this rerfers to RRRAY (3,4

(reserved wordc)

a program (irdirect mode)

refer to several _akle
the computer each
for the TC
providaes subsorinted

as foliows

JEY ©XDI2SS10i5.

array vairiable

ment of up to 72 characters.

of axray h. The first

is elcement in A two-

is determined by

expressions in parentiicsos

¢ reference to inc array
integers. If I=3 and
\
/

The DIM sta ement for array wariakrles and sets all array elements

to zero. form of the DIM statement is as follows:

DIM VV(<subscript>t,«subscript>...])
where VV is a legal variable name. Subscript is an integer expression which
specifies the largest pcssible subscriont for that dimension. Each DIM statement.
may apply t more one variacle. Some follow:

113 0D M A(3), B(1,1)

The +--+ A may contain four referrea to as A(0), A(l), A(2), and

A(3). The .rray B dafines & 4 cell, 2-dimensicnal matrix with each element

referenced a shown:

B(0,0) B(1,0)
B(G,1) B(1,1)
110 IN UT N
111 " AA(N)
The AA is dynamiceily dimensiorned during oreogram execution. That is,

N+1 wvalue po“itions are allocated, where N is input each time the program is run.

These positi ns are referenced as AA(0), AA(l), AA(2), ... AR(N).
Any in expression may ‘be used to dimensicn an array or matrix dynamically.
When the pro is run, the expressior is evaluated, thz results truncated to a

integer valu- N, and N+1 positions are allocated for. that dimension in the arrayv.

If no DIM has been executed before an array variable is found in a procram,
BASIC assume the variable to have a maximum subscript of 1 (11 elements) for each
dimension in the reference. A BS or SUBSCRIPT CUT OF RANGE error message will be
issued if an attempt is made to reference an array element. which is outside the space
allocated in 'ts associated DIM statement. For example: 50 LET A(1l1)=COS(X) when A
has been sioned by 2C A{10). &L BS error can also cccur when the wrong

nurber of dimimsions is used in an array element reference. Tor example:

38 LET ..(1,2,3)=X when A has heen dimensioned by 17 DIM 2 (2,2)

A DD or REDI NSIJNED ARPAY error occursz when a DI 3 for an array is
found after t at array ras heen This ocften occurs when a DIM
statement an array has given its dimension of 10.
d. Ope ators Precedence. BASIC przovides a full range of srithmetic
and logical : t The ordecr of exexzution of in an expressicn

is always acco :ding tc¢ their precedence as shown ir the takle below. The
can be specifil.d bv-the use of parentheses in th2 normal algekraic

fashion.

Table of Prz=cedence

Operators are “hown here in decreasing crder of preced:nc:. COCperators

the same entry in the table have the same precedsncs ané are executed in (rier

i

from left to right in an

I Expressi ns enclosed in pirentheses ()
2. exponen lation. Any nuxber to the zero pbwcr is 1. Zero to a ve
power causes & /@ o¥ DIVISION ZEFD error.
3, - negati n, the unary minus opefator
4. *,/ mult plication and division
5. +,~ addi ion and subtraction
6. relaticn 1 cparatcrs
<> not equal
< less than
> gxrecater than

less than or egual to
greater than or equal to

7. NOT bitwise negation
8. AND logical, kitwise disjunction
9. OR logical, bitwise conjunction

w
[a gl

in

Felaticonal operatcers e us.d in any expression. Relationzl eupressions have

the value either f Trus« or Talse (7).

2. Legical

and Boolean algebraic irms. The AND, GR, and NOT

to 32767,

form and .

oat o a time.

TWGrhyte cd, and 1o SRR
AND
X Y b ! 4

—
(=

—
~ -

=
K ke L
<) TR

>

= o=
— &
R S

X NOT X

The following examples of logical operations use nurbers 1, 2, 4. 1¢, ana 63.
The nurbers are written in binary notaticn as follows:

Number Binary Form
1

10
120

[O XTI S N T

1 10000
63 111111
AND 63 2 AND 4

111111 1460
AND 13000 ANRD 10
009 16

<

The NOT operator produces & "Oont's complement" of the wvariacie, 1.e. ={var. kie +.

For example, NOT 0 - 0+1) -1, and e ~(is3)= =2.
f. The LET statcment. The statement is used to sz3eiiun & vaolue Ta &

.he form is as follows:

where VYV is a variabile name and the expression is wny valiJ [25IC

logical, or string eoxpcession. Examples:

198 LET V=X rhe value of « is assigned to variable V.
11 LET I=I+1 the '=:' sigin here 5 'is rewlacad ky ...t
That 1is, the vzliue of T is by 1.
The word LET in a LET +s opticnai, so e guetions such as:

12f V=.5%(X+2)

are legal assignment statvements.

40

A SN or SYNTAX ERRCR messceGe is printed when BASIC detects

illegzl characters in a line, incorrecs

or missina

QV or COVERFIOW error . Iurs when result of a calcalation is

represented by BASIC's number formats. All numbers

lE-38 to 1.7¢241E38 or -1E-3% ta -1.72141E38. Ar

rust be witiiin

An

tec large to be

Zhe ranga

atternt to divide v zeroe results
in the /@ or DIVISICN BY ZFRT nessagn.
For a discussicn of strinus, string variables and string operations, zee
section 4.
2-2 Branching, Loops and .
a' =
T staterenits
i RASIC which T for bhrenching are the GOUO, IF. . THITT and O, . GOT
T form is as follows:
GOTG rwemunm -
Niter the is exceouted, " contintes at line Mo,
Z. Tts form is & fnllows:
IF v~ u—\.,.‘-ior: pahibolll RPENEESESER I
where tne o P I% & va..a arirthmetic, relational cr lcuical expression annd

mmminm is a line number.

continues at line mmv am. athergise,

IF...THEN statcment.

~noalterndte of TP...THF statement 1s 25 follows:
IiF “statemaents™

A=1Q is

tyun,

ation & e i roxt

Line after the

branches to

15 IF 2<B+C OR =~ 188 T A is then 3 » C, or if X
to zero, execution proceeds at _ine 100, IF o ls —a
and ¥=9J, the next progran statement 15 2xecuied.

24 I X z5 ¥ ¥ 1s nat the steuvenent :rarnches L
3¢ IF X=Y THEN Xz Lf i =Y oaw (its

th
't

zero) , the PHINT statement 1
I:. =

is not Tase, COroLnues
the IF...THEN

5 IR 39
L35 R pranch.
follows:
the OM...30T0 sta . §
or ILLIGAL N CATL ¢rroy will result.

L.
data or . orn same data.

1 The form of the X is a3 foilows:

which is called the 1:1tial wvalae.
the FOR statement in the asuval,
step 2 is added to the which is then asainas the

value 13
RINT statement

tire line

or if the and the variadble is greater than or eqgual to the final

values, then BASIC branches hack to the statement inmediately follcwiny the FOR

statement. Otherwise, proceeds with the statement following the NEYT.
If the step is not it is assumed to he 1. Examples:
1 FOR I=2 TO 1l1i : The loop i1s executed 17 timss with the

variabkle I taking on each irntegral value
. from 2 to 11.
28 FOR v=1 TO 9.3 Thig loop will execute 9 times until V is
Jreater thar 2.3
3¢ FOR V=1g*N TO 3.4/7 STEF SOR(R} The initial, final and step expressions

ne=d not be. but they will be
evaluated only once, before begins.
49 FOR ¥v=9 TO 1 STET ~1 This loopr will ke executesd 2 times.

FOR...NZXT loops may be nested. This is, BASIC will execute a FOR...NEXT loop
within the context of arother lcop. 2Ar example 9f two nesteg loops follows:

1@ FOR I=1 TO 1¢

127 FOR J=1 TO I

13@ PRINT A(I.J)

14@ NEXT J

157 WEXT I
Line 13@ will print 1 elemanc A if I=1, 2 if and sc on. I7 loors
are nested, they must have different loor variazble names. The NFXT statement for
the inside loop variable (J in the example) mdst aprpear before that for the outside
variable (I). Any numpber of levels of nesting is allowed up to .the limit of
availabie

The MNEXT statement: is . £ the form:

NEXT [<variable>], <veriable>...}!
where each variable is “he locp wariable of a FCR loop for which the NEXT statement
is the ‘end point. NEXT without a variable will match the most rezent FOR statement.
In the case of nested lcowns which have the same eﬁd pcint, a singie NEXT statement
may used for all of them. The first varieble in the list must ve that of the most
recent loop, the second of the next most recent, and so on. If BASIC encounters a

NEXT statement before its corresponding FCR statement has been executed, -an NF (NEXT

WITHCOUT FOR) error message is issued and execution is terminateZ.

c. Subroutines. If the same or series of operations are to be
performed in several places in a program, storage space requirements and prouramming
time will be minimized by the use of subroutines. A éubroutine is a series of
statements which are executed in the normal fashion upon being branched to by a
GOSUB statement. Execution of the sukbroutine is terminated by the RETURN statement
which branches back to. the statement after the calling GO3UB. Thz format of the
GOSUB statement is as follows:

GOSUB<line number>
where the line number is that of the first line of the subroutine. A subroutine
may be called from more than one place in a program, and < subroutine may contain
a call to itself or to another subroutine. Such subroutine aesting is limited
only by available memory. Subroutines be branched to conditionaily by use of
the ON...GOSUB statement, form is as follcws:

ON <integer expression> GOSUB<list of lin2 numbers>
The execution is the same as ON...GOTO except that the line numbers are those of the
first lines of subroutinss. Execution continues &t the next statement after the

ON...GOSUB upon return from one cf the subroutines.

&. OUT OF MEMC:Y errcrs. While nesting in loops; subroutinas and branching
is not limited by BASIC, memcry size limitations rastrict the size and complexity
of procrams. The OM cr OﬁT OF MEMORY error message l1: issued when a program reguires
more memory than is available. See Appendix C for an explanaticn of the amount of

memory required o run programs.

2-3. Input/Output.
a. INPUT, INSTRS, The INPUT statement causes data input to be requested
the terminal. The format of the INPUT statement is as follows:

INPUT<1ist of variables>

44

The effect of the INFUT statement is to cause the values typed on the terminal to
be assigned to the wvariables in the list. When an INPUT statement is executed, a
question mark (?) is rrinted on the terminal signalling = »equest for information.
The operator types the reauired numbers or strings séparated Dy cormas, and types a
carriage return. If the entered is invalid (strings were entered when numbers
were requested, etc.) prints 'RﬁDO FROM START?' and waits for the correct
data to ke entered. TIf more Jata was regquested Ly the INPUT statement then was
typed, ?? is printed on the terminal and oxecution aQaits the needed data. If more
data was typed than was reguested, the warning 'EXTRA IGNORED' is printed and execution
proceeds. After all the requested data is input, executicn corntinues norrally at the
statement following the IKPUT. 2n opticnal prompt string may be added to an INPUT
statement.

INPUT ["<prompt strings";]«variable list>
Execution of the statement causes the prompt string to be nrinted bgfore the guesticn
mark. Then all operations proceed as above. The prompt strincg must be enclosed in
double cuotation marks (") ana must be separated from the variable list by a
semicolon (;). Example:

1@g INPUT "VALUES"; X,Y causes the following output:

VALUES?
The requested values of ¥ and ¥ are typed after the ?. A carriage return in
rasponse to ar INPUT will cause execution to .continue with the values
of the variables in the wvariable list unchanged.

The INSTRS éllows you to read characters typed trom the keyboard
while leaving the screen unchanged. The format of the INSTR$ function is:

INSTRS (X)
The X argument gives the of characters of input to accept. Nothing is dis-

pPlayed on the screen when the INSTRS call is encountered. The 1 pauses until

45

X keys are pressed on the kayboard (the keys are rot dispiayed on the

screen), and the function returns the &¢tring of characters entered.

L. JOYSTICK INPUT. The functionz JCY, POT, and FIRF are used to read the
position of the joystick, the value of the potentiometer knob, and the hit button
respectively. See section €-3, Intrinsic Functions for a full description of

joystick input capabilities.

c. PRINT. The PRINT causes the computer te nrint The
simplest PRINT statement is:

PRINT
which prints a carriage return. The effect is to skip a sine. Tae more usual
statement has the following form:

PRINT<«list of expressions:
which causes the values of the in the list to ke printed. String

lietrals may be print2d if they are enclosed in c¢ousle cuotation marxs ().

The pozition of is determined hy the punctuation used to separate
the entries in the BASIC divides the printiag line into of 14 spaces -
each. A comma causes printing of the value of the next.éxpression To begin at the
beginning of the next 14 coiumn zcne. A semicolcn () the next printing to
begin after the-last value princed. 1f a comme or semicolon terminates
the list of ecspressions, the next begins drinting on the same line

according . the wcnditions above. Otherwise, a carriage return is printed. The

TAB and SPC functions may also be used t©o set spacing.

d. OUTPUT. The OUTPUT statement may be used tc display data or text at
screen position in any color. The form of the OUTPUT sctatement is

OUTPUT<expression>,<x>,<y>,<color:

i
(&)

The value is displayed on the screen at location <x>, <y>. The
<color> parameter may e 0, 1, 2 cr 3 and specifies the CCLOR array position which

identifies the color %o use for display. See the COLOR sta®temant in section 5-2.

The parameter <x> may batween C and 112, the parameter <y» betwezn C and 77.
Format for display of numeric valuass of is dezsciribed in section 2-1.
e. PLOT. The PLOT may bhe used to displav a dot ef c¢olar at a given

screen location. The {ocrm of the PLOT statement 13:

PLOT <y>,<colorx

The <x> , <y> parameters identify the screen cocrdinaie: 2t whicn te plot <coloxrs,

05x2112 and G 2y <77, “coinr> parameter may be J, 1, 2 or 3 and specifies

n

{

the COLOR arreay positien which identifie - the color %2 be plotted. Zz2 the CCOLOR

statement in section

f. WINDOW. The WINDOW statement i3 used to restrict to

part of the screen. The of the WINDOW statemant i

n

WINDOW <y>
The parameter <y> gives the of pixels to availsble at the of
+he screen for normal scrclling. The remeinder of the screen is made available fcor
vnd ‘sturbad Aisplay using the PLOT and CUTPUT sta“=ments. T@ ailow _ .ng space

fer N lines of text use the formula

<y>=(N+1) *6

g. DATA, READ, -
1. - The DATA statement. or string data needed in a procgram may be
sxiftten intc he program statemerts themselves, input from cassette tape or read
from DATA statements. The . of thz DATA is as fnllows:

DATA <list:

A
E

where the entries in the list are or strinc zonstants separated by
commas.

The effect of the statement is to store the list of values in memory in
coded form for access by RIZED stateent. Exambples:

10 DATA 1,2,-1E3,.04
20 DATA "WHITE","So¥"

2. The READ scatemenrt. Tha2 data stored by DATA stat-ments are accessed by 7.0
statements which have the following form:

READ <list of variables:>
where the entries in the list are variahle names of rpropriste data type

separated by commas. The effect.of the RIAD statement iz te assign the vaiues 1.

the DATA liscs to the corresponding var.ables in the READ =sutatement lis:c. This 13
done one by one from to right until the READ list is exhausteli. 17 there are
more names in the list than wvalues in the 2T lists a= OL (QUT OF DATA)

error message is issued. If there are more values siored i DATA statements than
are read by a READ statement the next READ statement tl.a: ig executed begins with
the next unread DATA list A single READ statement may access more than one
DATA statement ard more than one READ statement may access the data in a single
DATA

An SN (SYNTAX ERROK) message can result from an improperly formatted DATA
list. The lina number in the error message.wiliil refer to the actual line cf the
DATA statement in which the error oc;urrcd.
3. RESTORE statement. .After the rastcre statement is executed, the next piece
of data accessed by & RFEAD statement will be the first entyy ¢f the first DATA list
in the program. This allows re-READing tha data.

h. CSAVEing and CLOADing.Arrays. Numeric arrays nav te saved on cassette or

loaded from cassette using CSAVE* and CLOAD*. o of the statements are:

CS2VE* <array name>
and

CLOAD*<array name>

When an array is written out or read in, the elements of array are written out
with the leftmost subscript most guickly, the next leitmost second, etc:
DIM A(1g)
CSAVE*A

writes out A(g),A(1l),...A(1H)

DIM A(14,19)
CSAVE*A

writes out A(#,0),A(1,2)...A(1Z,%) ,A(14,1)...A(1F,10)
Using this fact, it is possibkble to write out an array as a two dimensional &xrayv

and read it back in‘as a ___ dimensional array, etc.

-

3l FUNCTIONS
BASIC allows functions to ke refersnced in mathematical function notation.
The format of a funiction call is as follows:

<name> (<argumant>)

where the name is that of a previcusly anl the argument is an
expression. Only one argument is allowed. Function a may be comporients of

expressions, so statements like

ET T=(F*SIN{T))/P ana
SOR(A 2+B

at
o
O

are legal.

3ol Intrinsic Functions
BASIC provides several used whiszh mav be cal ed from

any progran without jurther

For a list of irtrinsic functiong, see 5=3.

3.2 User-Lefined

The DEF The prcgrammey may cet.:n? furotoons which :re not
in the list of Lunc.oions by rweans o tho DEF s o wwmant. The form of the

DEF statem:ns iz as follows:

DEF<functicn nemar (<variable»)=-cxuressicn®

where the . name must he P followéed by a logal variable nams and the
variabls is 2 'dummy' veariable nawe. he cumwy reuresents the

variable (the value in the function czll). Orlv one argunent is allowed for a

user—-defined functic:. 2any xay on the right sids of the
but it must ke 1li to one

User~defined striny functions are nct allowed. Examples:

12 DEF When called with the measure of an angle
in degrees, returns the radian equivalent.
25 DEF FNFT(A)=A/12 When called with & number of inches,

returns equivalent number of feet.

A function may be redefired by 2xecuting anothar DFF statement with the same name.
A DEF statement must be executsd hefore the function it defines may be called.

For a list of formulae for matnematical functions, see Apoendix C.

3-3 Errors
An FC error (ILLEGAL FUNCTION CALL) results when an improper call is made %o
a function. Some places this might occur are the following:

1: a negative array subscript. LET A(-1)=f, fcr example.

2. an array subscriptlthat is toc large (>32767)

<) negative or zern argument for LOG

4. negative argument for SgR

5. A'B with A negative and B not an integer

6. improper arguments to MID3, LEFTS, RIGHTS. TAR, SPC,ICDLOR, poT,

FIRE, PLOT, OUTPUT, INSTES or ON...GOTO.

L. An attempt to call a user-defined functicn which has not nreviously

appeared in a DEF statement will cause e UF error (UNDEFINED USER FUNCTION) .

c. A TM or TYPE error will occur if a function which expects a

string argument is given a nureric value or vice-versa.

(€3]
1—s

4. STRINGS

Expressions may either have numeric values, or they may be strings of characters.
BASIC provides a complete complement of statements and furctions for
string data. Many aof the statements already ncen 0o only their

particular application to strings will treated in this section.

4-1" String Data

1S

A string is a list cf alphanumeric characters which may be from J to 255
characters in length. 3Strings may be stated explizitly as corstants or referred
to symbolically by variables. String are by ouotaticn marks

at the beginnring and end. 2. string variable name onds with a dollar sign (3).

Examples:

A3="ABCD" Sets the varieble AS tc the fcur string "AECDY

B9S="14n/56" Sets the B9S to the six character string

AAS="ES" Sets the variable RAS *cC the two character string "ES"
Strings input to an INPUT need not be surrounded by Juotation marks.

String arrays may e dimansiened exactly as any cther kind of by use of
the DIM elemernt of a scring arrav is a string wrizn may be up to’

255 characters long. The total number of string characters in use at any pcint in

the execution of a program must not exceed the total of strinu swpace or

o

an 0S or OUT OF STRINC SPACE error will result. &SHtring space is alliocated oy td
CLEAR 1 which 1s explained in section 6-2. The with a string

argument retvurns the of bytes cIf free string

4-2 String operations

-a. Comparison Cperators. The comparison operators for stringus are the same

as those for numbers:

52

=5,
Compariscn
difference
is reached
found in 2
”A"("
nynen
nopne
b.
string var
operator.
right side
concatenat

erYror mess

+ 11 E'\\]DII

(el
numeric da
1.

terminal.

when the

19

3¢ PRINT X$,"HI,

equal

not equel

less than

greater than

less than or equal to

greater than or egual to
is made by the kasis of ASCII codes until

on a

is found. 1If, comparison is proceeding, the end of one

the shorter strxing is consicered to ke smaller. ASCII =cdes may b=

pendix B. Zxamples:

~

" ASCII A is @ A
" ASCIT 1 is @
‘Leading and trailing blanks are significant in string literals.

ASCII blank is 2z.

65, Z is P9y
43

tring Dxpressionzs. String expressions are composed of shring li

ables and string function calls connected bv the +

or

The effect of operator is to add the string on

the operator %o the end cf the strxing on ths laft. of

Tf the result

is a string mor= than 253 characters long, an LS

e will be issued and will e terminated. For example,

"THE END". that spaces inside the quctes are significant.

aput/Output. The same ‘statements used for input and output =f normal

a may be usrd for string data as well.

e TNPUT ancd PRINT statements read and write strings on the

Strings irput from the keyboard neec not be enclosed in guotacion marXs,

are not, leadinc hlanks will be ignored and the string will be terminated

comma o is encountered. Examples:
Z0S,F0s Reads two strings sepdrated by commas or

colens, and assigns them to Z0$ and F0$
raspectively.

Peads one string and assigns it to the
variable 7S.

Prints two strings, including all spaces
and punctuation in second.

THERE"

w
(3]

2. DATA READ. DATA and READ statements for string data are the same as for
numeric da a. Strings in DATA statements should be enclcseé in quotes, and

separated commas .

The at for intrinsic string function calls is the seme as that for
Tor the list of string functiors, see section 5-3.

must erd with a dollar sign.

54

5. DIRECTORIES

5-1 Commands direct BASIC to arrange memory and input/ocutput facilities,
to list programs and to handle other houéekeepinq details in support of
program ion. BASIC accepts commands after it orints 'OK' and is at command

’]
level.
CLEAR

Sets all p og am variables to zero.

CLEAR <int expression:
Same as but sets string space (see 4-1) to the value of the integer mxpression.
given, string space remain unchangel. When BASIC is loaded,

string spa e is set to 5@ bytzs. CLEAR may be used as a proérém statement.
expressions]

Causes the ' program to ke deleted, all wvariables to be cleazrad, ard the

program on cassette tape desicnated by tne first five characters of <strinc

expression lcaded into memory. If no string is giyen, the first available

program is loaded. The cassette READ button must be pressed the CLOAb

can begin.

CLOAD*<arr name>

Loads data £ cassette tape into the specified array. CLCAD* mav be used as a

program ment. The cassette READ button mush be the CLOAD*

can begin.

CONT

Continues - after a Control/C has been typed or a STCP or END
statement 3 been executed. Execution resumes 2t the after the break
occurred un inpvt from the terminal was interrupted. In case, execution

resumes with the reprinting of *the prompt (? or prompt string). CONT is useful ir.

debugging, where ar ‘'infinite l.oor' is suspected. An infinite loop is a

|5

series of

used to pr

can be

statement,

the break.
CSAV [<str
Causes the
specified

given, the

Causes the
as a progr
before the
LIST [<lin

Lists the

line numce

If you wis
the screen
it was sto
listings
NEW
Deletes

program

rest

from which there is no escape. Tyring Control/C a bhreak

and puts BASIC in commana level. mode statements can then be

nt intermediate values, change the values of variables, etc.
by typing the CONT cominand, or by executing a direct mode GOTO
itch execution to resume at the specified line number.
direct mode error has occurred
xXecution cannot continue

- the procram was uodified during the break.

ng expression>]

cgram currentiy in memory to be saved on cassctte tape under the narma
the first five characters of <string expressions I rc string is
ogram is stored with no name.’ Eoth tihie and WRITD cassetie battons
arrsy to he saved on cassette tape. CSAVER mav bhe usen
Both tne READ and WRITS buttong must Ze
issued.
r gram current;? in memory.starting wicnh the given lirne namber. If nc
15 glven, listing begins the lownst numtered iine. 5 —'F is
e ther bv the egd of the program or by zypina Control/C.
incerrupt a4 listing vi.e Control/S. The output to

stop until you type Centrol/Q, wher listing will resune from

by the Control/S. This tacility is useful whan revicwing

are tco long to fit on wrme screen.

program and clears all variablaes. tefore

terminal.

[}
g

REWIN
Turns cassette motor tc permit repositioning_of the tape. To rewind the
tape, epress the REW button; to advance the tepe rapidly, depress th= FAST
FORWA button; to play a tape through the TV speaker, depress the READ button.
the cassette in record mode (READ and WRITE buttons both pressed;}.

g any key on the keyboard.signals completion of tapg repvositicning, and

turns the tare moﬁor. REWIND may alsc ke useld as a program statemznt.
e number>]

execution of the program cuxrently in memory at the iine specified.

If number is omitted, execution begins at the first line.
5-2 atements. The fcllowing table of statements is _isted in zlphabetical
ordex. In the table, ¥ and T stand for any I and J gtand for

expres ions whose values erxe trunczted to integere. ¥ and W are any variablz
names. he format for a 3ASIC line is as follows:
‘<nnn n> <statement>[:<statement>...]

where nnnn is the line nurber. Unless otherwise noted, stataments mey also be

issued direct mode commands.

Wame Tormat

CLS CLS

Clears screen

COLOR COLOR<color list>

Select palette of fouxr cclors for plotting and cther screen display. Subseguent
refere to cclors is by position number (0, 1, 2, 3) in <color list>. The
first ofe, color 0, automatically become the background color. The LIST command
prints line numbers in color 1 and statements in color 3. Displays from PRINT

and IN appeax in cclor 3. Available color velues are (=black, l=red, 2=green,

3=vell 4=blue, 5=ragenta, 6=cyan, 7=white. TFor example, COLOR &, 7, 3, 1

57

produ es a black screen with white line numbers

and red statements shown by a

LIST. from PRINT and INPUT appears in red. The default is COLOR
4, 3, 7. (blue, yellow, black,
DATA DATA<list>
data to be read by a READ statement. List elements can be numerical,
or string constants. List elements are by commas.
DEF DEF FNV{<W>)=<¥>
user~-defined function. Fupction isI”N foliowea by a legal
vari- name. Definitions are restricted to cne lines (72 charactsrs). User-
string functions are not allowed. DEF may not be used in direct mode
DIM DI <V>(<I>[,J...)000,...]
space for array variables. More than one variable may bz
IM statemenc up to the limit of the value of axpression
gives maximum subscrivt possible for that dimensior. The .maliest
is @g. Without & DIM stetament, an arrivy is assumed to hav:
subsc ipt of 17 ifcr each dimension For examcle, A 15 ass &
to ha e 121 elements, ‘from A{f,7) tc 2A(1¥,ig) unlcess otherwise in
a DIM 5
END
Termi execution‘of a program. FND mav nct he used in direct mode.
FOR FORCV>=<X>T0O<Y ™ [§]
Allow repeated execution of the some First executicn sets V=X.
Execu . proceeds normally until NEXT is encountered. 2 is ad to V, then
IF 2« and V>=Y, or if Z-8 and V«=Y, BASIC Eranches back to the statement

after FOR. Otherwise, exccution continues

GOTO GOTC<nnnnn>

Uncon itional branch to line number nnnnn.

tha statemont

L.
)

GOSUB) GOSUR<nnnnn>

i35
=1V

Unconditional branch to subroutine } at line nnnnn’

IF...GOTO I7 <X>
Same as IF...THEN GOTO can only be w by a line number and

not another staterent.

IF...THEN IE«X>TFEN<nnnnn>

or IF<X-TPEN<statement>[:statement...]
If value of ¥<>(0, branrches tc lins or executes statements following THEN.
If X=0, proceeds to next !ine in program.

INPUT TNPUT l<string expression;>]<V>|,<Wu...}

"Causes BASIC to reguest input from terminal. values typed on the terminal are

assigne”® to the variables in the list. If no expression 1s gi-ven, BASIC
will print a question Tf a string expre=sion is @ivern, 3ALKIC will print

its string value, then a guestion mark. Input values should re separated by

commas, terminated with a3 carriage return. INPUT not e used in
mode.
LET

Assions the value of the exwression to the variable. The word LET is ontional.

o v 1
NEXT NEXT [«V>,<>.0 0y

Last statemert of a TCR lacp. ¥ is the variable of the most recent lans, W of

the next and so on. without a variaki2 name terminat2s the most

recenz F R lcop.

ON...G"TD ON=I»>GOTO<list of line rmrzerss
Branches to lins whose number is I:% in the Lizz eclements are separated

by commas. If I=f or » numter of elewments in the lish, executicn continues &%

next statement. T1f I«g or »255, an error results.

ON...GOSUB ON<I> 72SUB <list of line
Same as ON...GOTC except are initial lin2 rumbers of subroutines.

OUTPUT

Displays the value of <expression> at the given <x>, <y> screen coordinates,
using the color whose COLOR array wosition is ciwven by <color>. 9%«x><112,

0 S<y>277, Numeric values for «exprecszions> are printed as described
in section 2-1.

PLOT PLOT<x>,<y>,<coloxr>

Plots a dot on the screen at the given <x>, <y> position using the color whose

COLOR array is given by <color>. The screen origin (G,C) is the lower

PRINT PRINT<X>[,<¥>...]
" Causes values of expressions in the list to be printed on the terminal. Spacing

is determined by punctuation.

PUNCTUATION Spacing ~ next printing becins:
at begirning of n2xt 14 column zore
immediately

other or none &t beginning of rnext line

String literals may be printed if enclosed by (%) marks.. String expressions

may be printed.-

READ READ<V> [,<W>...]

Assigns values in DATA statements to variables. Valiues are assigned in sequerce
starting with the first value in the first statement and the first variabkle
in the READ list. Later READs continue from where the last left off, unless

the RESTOrE statement has been executed.

REM REM [<remark>]

Allows insertion of remarks. Not executed, but may be branched to.

RESTORE RESTORE "

Allows data from statements to be reread. Next READ statement after RESTORE

begins with first data item of first DATA statement.

RETURN ' RETURN

Terminates a subrcutine. Branches *o the statement after the calling GOSUB.
RETURN may not be used in direct modle.

REWIND

Turns on cassette motor tao permit repositioning of the tare. 7T rewind the
tape, depress the REW putton; to advance the tape rapidly, depress the FAST
FORWARD hutton; to play a tapa thfouqh the TV speaker, depress the READ button.
Do not put the cassette in record mode (READ and .WFITE buttons bhoth pressed).
Pressing any key on th=2 signals completion of tape renositioring; and

.turns off the tape rmotor.

SOUND SOUNL<evp 1>, <exyp 2>

Generates various sounds on values for ceur 1x, «<exp 2».
SOUND 7,4096 turn~ off anv sound. SOUND producas A siren; SCUND 3,32
a low huzz: SCUND a medium buzz; SCUND »,0 a high hurz.

STOP

Stops program execution. enters command level zna prints BREAK IN LINE
nannn. STOP mayv he used in direct mode.

TONE

Generates mus cal tones with frecuency based or 1/<exp 1=, Zor length of tima

Fproperticnal to I>*<exp 2>. Avoid the use of negotive or large positive
values for <ewxp ix* 2>, as these will produce tones.
Restricts normal scrzan to a portion of the scxeen. r of

pixels of wertical scrolling space i3 given bv <exp>. To ccmp.ite the number
of pixels reguired to provide M print lines of scrolling svace, use the formula

(N+1) *€.

5-2 Intrinsic Funictions
BASIC provides several cormmonly used rnumeric and strinc Zunctions that mayv be
called from your program without defirnitcion. Iindividual Ffunctions
are described in'a}phabetic order below, All such functions take the hasic
form:

name (X[,Y...]}

where is the name of the function, and X and Y...are function ument

7]

(variables, expressions, or constants of the appropriate data Ivwi.:).
functions may be used in BASIC commands or wherever = numeric

is permitted, string functions wherever string expressions may b2 use .

Examples

BASIC Statement Type Function Example

&ssignment T A = EXF(¥)

loop control - FOR I=1 TO A5S(X)

conditional branch IF COS (%) THEN 230

concatenation A5="TOTAL=" + STRS(TL)
The following table lists i1n alphabetic the name of each irtrinsio
its call and a description of its purpose, inputs, and ouctputs.

rur.cticn
ABS ABS (X).
absolute value of expressicn X. ABS(¥)=X 17 X»=§,-¥ if XN<f.
ASC A3C(XS) . .
Returns the ASCII code of the first character of the Xs. ASCII codes
are in appendaix 2.
ATNM ATN (X

Returns Fesult is in radians in range -pi/2 to

62

CHRS CHRS (1)

Returns a strinu whose element has the ASCII character identified by

code 1. ASCII codes in Appendix A.

Cos COS (%)

Returns cos(X). X is in radians.

EXP EXP (X)

Returns e to the pcwer ¥. X must > <=87.3365.

FIRE FTRE(X)

FIRE(Q) reads tre hit button on the left joystick control, FPIRE (1) reads the
right hit button. FIRE returns a ¢ if the bu ton is pressed. 1 if nqt pressed.
FRE FEE(E)

Returns numbexr cf bytes in mremory nnt being used by BASTC cr the current prccram.
If argument is 2 striny, returns of free bytes .n string space.

INSTRS IN

48]

TRH{X)

Waits for keyboard input of X characters. No promp: is given, .o input is

displayed on the and no carriage return is raguired to te input.
Returns input as a strinc¢ of lengtih X and the rcreen display

02xZ255.

INT INT(X)

Returns the largest =X

JOoYy JOY (¥)

JOY (Q) reads i~ position of the left jovstick. JOY!1) reads the right joystick.

JOY returns valuez as indicated bejiow.

Left

LEFTS LEFTS (X$,1)

Returns leftmost 1 of striny XS.

LEN LEN (X$)

Returns length of string X$. Non-printing characters and blanks are

counted.

LOG LOG (%)

Returns natural (base e) log of X. Xx>¢

MIDS MIDS(XS$,I[,Jd))

Without J, returns rightmost characters from X$ beginning with tne Ith

charactex. If I>LEN(XS), MIDS returns the null strira. @<I<255. Wizh 3
; returns a string of length J of characters from X§ keginn'n

with the Ith character. If J is greater than the number ci charactere in

XS to the right of I, MICS returns rest of the strinc.

BND RND (X)

Returns a random number between g and 1 using the uniform grobekility distril |

¥>@ gives' the next number in the seguence of rancom numbers. ¥=§ repsats th:

last number returned. X<J “nitiates a.new numher seguence. Seaguernces
started with the same nurcer will »¢ the same.

POS PGS (1)

Returns the screen column position at which cheracter would print.

Leftmost csition =§.

POT POT (X)

PUT(0) reads the krob on the left jovstick control; PGT!1l) reads the right
knob. Deperding on the position of the knob; POT returns a vaiue between
3 and 200.

RIGHTS RIGHTS (¥$,1)

Returns : I characters of string x$. If returns ¥5.

SGN SCN (X)

If X>@, returns 1, if X=f returns g, if X<@, returns -1. For example, ON

SGN (X)+2 GOTO 144,227,387 branches to 187 if X'is negative, 202 if X is g and
3¢9 if X is positive.

SIN SIN(X)

Returns the sine &f the value of X ir radians. COS(X)=3IN({%+3.14159/2).

SPC SPC (1) |

Generates string of I blanks.g<=I<=Z55.

SQR

Returns sgquare root cf X. X must be >=7,

STRS STRS (X)

Returns string of values of X.

TAE TAE(1)

Spaces to positicn I orn screen. Space. @ is the leftmost space, 19

rightmost. If the carriage is already beyond space I, TaB has nc cffect.
Mav only be used in FrRINT :statement.
TAN (X}

Returns tangent(X). X is in radians.
VAL VAL (X3)
Returns numerical value of string XS. If first non-blank character of X$ is not
+,-,. or a digit, VEL(X3)=4.
5-4 Special Characters

BASIC recognizes characters in the ASCIT fon*t as having spnacial
functions in carriage contrcl, editing and procram interrupnticn. Characters
such as Control/C, Control/%, etc. are typed hy holding down the Control key and

typing the designated letter.

Myped as Printed as

Separates statements in a line
B ?
equivalent tc PRINT statement.

Carriage return

Enters commands, statements, or da*a into memory anc returns print positicn

to beginning of & new line.
(backspace)
‘Erases last cnaracter typed.

Control/C

TInterrugts executlcn of current program or LIST

execution >f the current

U

cr after

goes to command 1.vel anc tvpes OK. CONT comman

section
Control/D

Supgpresses all antil an

INFUT statemer.t 1

command. 2ffect after
t.e currernt line. T %
caumes executior S

]

s

¥

ncountered, (nother

-Contrcl,/C is typed, an exror occurs or BASIC returns to command lavel.

Contrcli/R
zyecuticn to resume after Con*rol/S and 3 50
effect if no zemmand ig being esxecutzed.
Centrel/S
Causes program or To pause until Tortrol/Q or Control/C

is typed.
Control /U

Signals that line being input

should ze ignoxed;

carriage return.

5-5 Error Messazes

an error occurs, Ba3IC returns to command level and types OK. Variabie
values and the progrem text remain intact, but the program cannot be continued
by the CONT commanci. 21l GOSUB and FOR context is lost. The program may be

a cirect

]
=3

continued by direct mods GOTO, however. Wren an error occurs

statement, no lire number is printnd. Format of error messages:

Direct Statement 7YX ERROR
Indirect Statement ?¥X FRROR IM YYYYY

where XX 1is the error code and YYYVYY is the line numbker where *he

occurred. The followirg are the errcr codes and thelr meanings:
ERROR CODE EXTENDED ERROR MESSAGE
3 STEESCRIPT CF RANGE
An attempt was.made o refarence ar array elemenrt which is the
dimensions of array, or the wrchg number ¢t Aimensions zre used in an

arrav reference.

CN CAN'T CONTINUE
Attempt tc cortinue e program when none a direct mode error occeurred,
or after a-modification was made to the program.

DD
After an array was dimensioned, ancther dimension for the =same array
was encountered. This error often occurs if an array has been Jiven the
dimension of 1f and later .in the prbqram a DIM statement is found fcr the same
array.

re ILLEGRL rMICTION CAIT
The parameter passe2 t¢ a numeric or string furction was out of range.
errors can occur duz tc:
1 a negative arrav subscript (LFT A(-1)=f)

2. an unreasonablv array suvbscriont

3. LOG with negative or zero argunent
4. SQR with negative
5. A"B with A negative and B not an integer
6. Calls to MIb$, LFFTS, RIGHTS, TAB, SPC, FIRE, POT, JOY,
PLOT, OUTPUT, INSTRS or ON...GOTO with an improper argument.
ID ILLEGAL CIRECT
Certain statements are legal only ir indirect mode. See individual statement
entriec in section 5-2.
LS STRING TOC LONG
An attempt was made tO create a string mo?e than 255 characters long.
MISSING OPIZPAND
An atterpt was made to execute an irccmplete commard, statement, cr functicen
calculation.
N NEXT WITHOUT FO®R
The variable in a NEXT statement cor._esponds e no previously executed FCR
statemant. |
OD oU'T OF
A READ statement was executed but all of the DATA statements in tre program
have aiready beer read. The program tried to too much data or insufficient
data was included in the rrogram.
oM OJT OF MEMORY
Program is too large, has toc many ver:ables. too manv I2F loops, toco many
GOSUBs oxr too complicaited expressions. Aorendix .
0s CUT Or STRING SPACE
String variables exceed amount of string space allocated for them. Use the

CLEAR command to * more string space oxr use smaller strirgs cr fewer

string variables.

ov

The result of a calculaticn was too
format. If an undexflow oc-urs,

continues without orror message

RG

A RETURN statement

executed.

SN

Missing parenthesis in an expression,

punctuation, etc.

n

i

A string expression was

shorter ones.

Pofcroence w

"The line rofercnce i a2 GYTO

ne

encountered .

o~ - -y - c g ~ ¢
as te ¢ user dnfined

CVEFFLOW

to ke represented in BARSIC's nunber

RETURN WITHOUT

printad.

zern is giver as the result and execution

GQOSUR

a previous COsU3 statoment was

character in a line, incorrect

loeng or too complex.

Break it intoe wn Or move

function which &
B alrl s ewer adeilr G.
was to a line which not

Y

= 5 .+ 4 R R -
as fleating poelirt divisinn., e

5-6 Reserved Words

Some words are by the BASIC interpre:er for use as statements, comranis,
operators, etc., ard thus may not be used for variable or function names. In
addition to tr&_ words listed below, intrinsic furnction rnames are reserved words.

RESERVED WORDS

AND NEXT

CLEAR NOT o
CSAVE " ON :
CLOAD OR
. COLOR OUTPUT

CONT PRINT

DEF READ

DIM . KEM

END ’ RESTORE

FN RETURN

FOR REWIND

GOSUB

GOTO SOUND

IF STFP

INPUT $T0P

LET THEN

LIST TO

NEW TONE

WINDOW

DECIMAL

ggl
282
g82
234
gas
d2s5

948
2l
gla
211
312
gl3
314
gl=
glse
817
Jls8
319
329
921
322
423
324
425
42¢

- !
2z8
42¢
)

t+ ca

by oga
<)

l.’

W

'}
&
'Vl
o]
M

CZAR
NCL
SCE
STX

—mm
o

Z07
ENQ
acx
3EL

ke

>4}

—_—

ASCTI CzZazZaAlTER CCDE3
d43 -
344
945 '
g4n
47 /
048]

1
d50 Tz
a31 3
§32 4
253 g
224 &

7

7 3
857 9
C
3359
353 <
oy L 3
deEZ >
26
264 z
A
66 3
487 C
963 T
655

= a7
g7i G
372 =
3773 I
374

z 273 =

' L
377 N
273 N
2479 X0
98¢ 2
a8 e,
332 ‘R
gel
784 Py
d4853]

PT=I0orn Teed CF=Carsiace

SZCIMAL
€cs

@82
g89
g9
691
g9z
893
83

g<c3
96
a9
ge3

(s3]
(Y]
O

183

ety §3 s

DG Ta W
HIRSNE R S N 5

(S

R = BRVE NGO RN

HS N AR BN T ECER R SN EERLETE PN S PR GSN S U AN]
LIS

Rl el e e R S S R R
EY WO O 4 L e

3 ATt

in re YA O

.
s

el I Y

B
SPACE SPEED HINTS

A. Space Allocation
The memory space required for a proyram depends, of ccocurse, on the number and
kind of elements in the program. The following table contains information on the

space required for the various program elements.

Flement Spaca Required
Variables
integer 5 bytes
floating point S}
string 5 bytes

Arrays.. Lat # of elements, D = # of dimensions.

* (N + D) + & bytes

integer 2 N
floating point (4 * ¥) + (2 * D) + 6 bytes
string (3 * N) + (2 * D) + €& bvtas
Functzeons
MMerinsic L byte for the call
fired ¢ Lyres for the definition
Words 1 byte each
Qther Characters 1 bvte each
Stack Space
active FGR cop 16 bvtes
active 5 bytes
parentheoces ‘6 bites each cet
Litc 10 bytes

B. Space Hints
The spac2 required to run a progrem rav be significantly reduced without

affecting execution by following a few oz the following hints:

w

1. Use © ' 7 statements per line. Fach line has a pyte overnead for the line

numbexr, etc., sa the fewer lines there zre, the less is reguired.

2. Delete unnecessary spaces. cf writing

10 PRINT X, ¥, 2

10 PRINTX,Y,Z
3. Delete REM to 1 byte fcr REM and 1 byte for eﬁch character
of the remark.
4. Use variables instead of consgtants, eszpecially inside £or 1ooms, and wher the

same value is used several times. For usinc the

3 ten

times in a program usss 40 more space than assigning

10 P=3.14159
once usirnc P ten times
5. Using END as the of a proyram is not necessary 2nd takes [ive
extra bytes.
6. Feuse varinbloes ingtead of delining new variables.
7. Use subroutines of the =ame cires.
3. Use tne zero of arrays.

106 IM A(LO)
has eleven clemeng, A1) . ’
C. Spead Hints

e time.

reference. 2t the h of the wunle take less to ssarch for
those at the =nd. ¢ wvari names and xaen the list of variables

. as short as rossible.

3. Use NEXT without the index variable.

4. String variables set up a descriptcr which containrs the length of tﬁe string

and a pointer to the first memory location of the strinc. As strings are manipulated,
string space fills up with intermediate results and extraneous material as well as

the desired string informatio...

When this happens, BASIC's '"garbage collection” rcutine clears out the unwanted
material. The frequency of garbage collection is inversely prcportional to the
amount of string space. The more striny space there is, the longer it takes te

fill with garbage. The time garbage collection takes is proportional to the

of the number of string variables. Therefore; to mirimize garbage ccllection tine,

make string space as large as possible and use as few string variahles as possible.

APPENDTIX C
. ATHEMATICAL FUNCTIONS

Derived Functions.

The following functions, while not intrinsic %o
can be calculated using the existing BASIC

Function: 3ASIC equivalent:

SECANT SEC(X) = 1/COS (X}
COSECANT CSCi{X) = 1/SIN{X)
COTANGENT COT (¥X) = 1/TAN(X)
INVERSE SINE ARCSIN(X) = ATN(X/SQGR{~-X*X=1))
INVERSZ COSINE ARCCOS (X) = —-ATN X(X/SQR(-Xx*%X+1))
+1.5708 ‘
INVERSE 3ECANT ARCSEC{X) = ATN (xaQQ(x*x—i))
+SGN {SGN (X)-1)*1.5728
INVERSE COSECANT ARCCSC(X) =

+ (SG VIX)—I)*L 3748

INVERSE COTANGENT ARCCOT (X) = ATN(X)

HYPERBOLIC SINE SINH{X) =

HYPERBOLIC COSIWE COSE (X) = (EXP(X)+EX2 (~-X))/2 _

HYPERBOLIC TANGENT TANH (X) = EXP(~X)/ELP (X)+EXP (-X))
*2+1

dYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXZ(=X))

HYPERBCLIC COSECANT CSCEX) = 2/(EXPI(X)~EX2 (=X}

HYPERBOLIC COTANGENT COTH{X) = EX2{-X)/{ZX2(X)~ZXP(-X))
*‘7_’_1

INVERSE HYPERBOLIC

SINE ARCSINH (X) = LOG(X+SQRX*X+1))

INVERSE HYPERBOLIC

COSINE ARCCOSB (X) =

INVERSE HYPERBCLIC

TANGENT ARCTANH {X) = LOG((1+X)/i1-X})/2

INVERSE HYPERBOLIC

SECANT ARCSECH (X) = LOG(

INVERSE HYPERBOLIC

COSECANT ARCCSCH(X) = LOG((SC X)*
SQR(X*X+1)+1) /X

INVERSE HYPERBOLIC

COTANGENT ARCCOTH (X) = LOS({X+1),/(x-1y)/2

A-MOD B

A-B*INT (A/B)

APIZ.DI¥ D
USING THE CASSETTE TAPE UNIT

Programs may be saved on cassette *“ape by means of the CSAVE command. CSAVE is
used in direct or irdirect mode, and its format i< as CWS;

CSAVE [<string exwressicn>)
The program currently in memory is saved on cassecte undexr the name specified by the
first five characters of the strine exprassion. 1I'cr example, the program named 4
is saved bv M"A". If no string is given, the proeram is stor:d i ro

After CSAVE is completed, RASIC always ceturns to commar.d

are writter. ~n tape in BASIC's internal representation. Varieble values not
saved on tapc, although an indirect mode CSAVE do2s not the variable values
of the current.y in memory.

Be fore usine CSAVE, make sure the tape is positione properiv (sec

below, for vewinding instructiong). In DRIRECT mode, depress . and WRITE

attempts te execitt2 the ISAVE

has the format as CSAVE. CLOAD is used in direct mode onlyv. The efiect of
CLOAD 1is. to a ' NFW command, clearing memory and all and

lcading the s»mecified prcoram into memory. When done reading and lcading,

returns to command level.

Before using CLOJAD, make sure th - rfape is rositioned (sae
below for In deprcgs the READ button; then

issue the CLOAD or vice versa. BASIC <cas not return to coimmand level after a

CLOAD 1f it could rot find the recqueste

fu
H
s
t
J
L
o+
@]
m
on
(1]
-
ct
4
17

continue -to search urtil it is reset.

BASIC data may be read and written with CSAVE* and CLO2D* commands. The
formats are as follows:
CSAVE*<array variable name>

and CLCAD*<array name>
See section 2~3d for a discussion of C3SAVE* and CLOAD* for array data.

To reposition a cassette tape, you must issue the REWINLC command to turn
on the tape motor, anc depress the REWIND or FFWD button on the built-ia cassette
unit. In direct mode, ycu may push the buttqn, then-issue the command, or vice
versa. In indirect mode, push the buttcn prior to exécuting the statemenc.
Following a direct or indirect REWIND, depress any key on the keyismard to signal

that repositioning is complete.

E
CONVERTING PROGRAMS
NOT WRITTEN FOR THE INTERACT

Though of BASIC on compuza¥s are in many ways

similar, there may be some incompatibilities betweer your BASIC and the BASIC

15 Strirgs.
2 number of BASICs require the length of strings to be deciared refcre they are used.
All dimension statements of this type shcuid be remcved from the program. In some

of these BASICs, a declaration cof the fozm DIM AS$(I,J) declares a string array of

J elements each of which has a length I. Convert DIM of ghis ! to
equivalent in your BASIC (e.g. DIM AS{J)). 2ASIC u<es "+" for ona-
nox "," or "&". usas LEFTS, RIGHTS and MIDS to take cf

other BASICs usc AS(I) to access the Ith of strinc ..§,
a. d o take i subs ct AS from character position I to
J. Convert as follows:

SLD
AS(I;
AS (I,J) MIDS (AS,I,J-I+I)
This assumes that the to a subscript ol AS is in an on the

right sice cf an assiunment. If the raference to AS i3 ¢on the left hand side of
an a: -.gnmer.t, and ¥$ is the string expression used to replace characters In Aj,
convert as follows:

QLD

AS(I) XS ; AS=LEFTS (4S,I-1)

AS(1,J) =X3 +US+MIDS (A5, U+1)
2. Multiple

Some BASICs allow statements of the

This statement would set the P and C to zero. 1In your BASIC, this has
an entirely different effect. All the "=" signs tc the right of the first one
would be interpreted as logircal comparizon operatcrs. The easiest way to
convert statements this or2 is to rewrite them as fcllows.

50¢ B=g:C=g

3. Some BASICs use "/" insikead of ":" to delimit multiple statements cr a
line. Change each "/" tc ":" in the program.
4. Programs which use AT functions available in scme BASICs will have *o

be rewritten using FOR...NEXT locps to nerform the appropriate 0 .

The
the

met

10
20
30
40
50
60
70
30
20
100
110
120
130
140
160
170

130
2C0
2.0
220
230
240
306
310
320
330
340
400
419
420
430
440
450

LPPENLIX F

SAMPLE P?ROGRAMS

Depreciaticn Program

program below calculates depreciation
straight-lire, double-daclining

hod.

CL3:0UTPUT "DEPRECIATION",15,40,2
OouTPUT "ROUTINES", 30,30,2

CLS:0UTPUT "1 STRAIGHT-LINE" ,4,50,2

OUTPUT "2 DOUBLE DECLIN.",4,40,2.
"3 SYD METHOD",4,30,2

WINDOW 18:INPUT "METH®D";I

IF I<=3 AND I»=1 GGTO 100

PRINT"1,2 OR 3 PBPLEASE" 70
CLS:WINDOW 77
PRINT "STAR C":IN

PUT " VALUE" ; V

\
FRIN™ “USEFUL" :INPY ! Lig2B" ;N

CLS:0ON 1 GOQT 146,150,160

PR;NT "STRAIGHT-LINE" :PRINT:GOTO 170
PO e~ Loy N 3% &g S (Y] -
PRI "SYD METEOD" :PRINT

i "YR DEPK. VALUE"

-

ON!I GOTO 200,300,400

REM S-L CALCULATIONS

D=V /N

V= "-D:J=J+1

PRENT J;SPC(1);:D;SPC(2);V
IF J<J GOTO 220:END

KEM -D

J;5PC 1) :D2:;5PC(3);V
IF|J<¥ GOTL 320:END
REM 5YD
Fl1=Yv/(N*(N+1)/2)
J=J+1:F2=N-J+1
D=F1*F2:V=V-D
PRINT J;SPC/1);D:;SPC(3);V
IF J<N GOTO

veing your choice of

oz

—
-~
(=)

sum-of-years-digits

B. Sort Program

The program below scorts a list 2f numbers into ascending order

using an exchange scrt technique.

10 REM PROG.
20 CLS
30 “HOW " NTMBERS" ;N

40 DIM K({N)
50 CLS:PRINT "ENTER VAIUES:"

60 . TO N:INPUT K(I):NUEXT T
76 TOR I=1 TO N-1

80 REM FIND NEXT S$SM¥MALLEST NO.

90 FOR J=I+1 TO N

100 I¥ K(J)>=K{I) GOTO 130

110 REM EXCHANGE SMALLER NO.

120 K1=X (T} :K/1J)=X1

130 NEX. J

140 NEXT =
" ¢ PRINT:PRINT "ORDERECZ LIST:":PRINT
FOR I=1 TO N:PXINT K(I):NEXT I
(@ Craps CGame
This program si.iulates & <rap game. Rules are printed if you
reques< the dice by rressing the 'CR' key when asked

to throw the diz:.

10 CLS:INPUT ... ___ ue—

20 IF¥ AS="YES" OR A$="Y"' THEN 500
3C REM CR .PS

40 CLS T--THROW--":BS$=INSTRS(1)

50 GOSUB 600

60 ON NUM-1 GOTO 70,70,90,90,90{80,90,90,90,80,704
70 CLS

71 PRINT NUM; "--YOU LOSE":GOTC 140

80 CLS

81 PRINT NUM; "-~--¥QOU WIN":GOTO 140

90 CLS:OLD=NUM

91 PRINT MNUM; "--THEOW AGAIN".:B3=INSTRS'’1}
100 GosuB 690

110 IF —7°° ~°7 GCTO 81

120 IF NUM=7 GOTO 71

130 GOTO 91

140 "PLAY AGAIN";AS
150 IF A$¢="YES" OR A$="Y" GOTO 1
16C END

APPENDIX G

TNE Parameters for Generating Music

The TANE camand takes two arguments. The first determines the pitch — the
tone. The product of the two arguments determines the lengyth of the note.

(See section 5-3.) Listed below are values for the first parameter and the
pitches they oroduce for wwo octaves of the chramatic scale. To produce two
different pitches of equal duration, you must cecle the second paranmeters so

that the products of the parameters are equal.

For example, suppose you wish to produce a C-E-G fran the chart we
can see that 168 as the first TONE parameter produces a . Fick a sscond
parameter thac produces a C of the desired 168,150.
product cf parameters is 168 x 150 = 25,2C0.

The first parameter value for = is 131. The seccna parameter is

by solving .= equation =131 x ?. Since is

192, the curmand 131,192" will produce an E same length as
the C. Fer the 3, caloulate the second parameter as 25,200/113, or atout 229.

Therefore, wit TONZ tc preoduce & G of ths same lencgth as the E and C.

To try this example, run the fcllowing program:
10 TONE 168,150

20 TONE 131,192
30 TONE 110,229

Dividing all second perameters. by 2 produces toncs lasting 1/2 as long, making
the notes go faster. Multiplying them Ty 2 produces .otes twice as long, and

SO On.

500
510
520
530
540
550
560
570
s8o
53¢
595
200
€10
620
530

REM RULES

CLS:PRINT "RULLZS FOR CRAPS:" :PRINT

"PRINT "TO WIN:":PRII

PRINT “"GET A 7 OR 11" :DPRINT " ON 1ST THROW"
PRINT:PRINT "OR GET 4,5,6,8":PRINT "9 OR 10 THEN"

PRINT " MATCH IT":R3=INSTRS (1)

CLS:2RINT "TO LOSE:":PRINT

PRINT "GET A 2.3 OF " ON 1ST THROW"
PRINT:PRINT _ THROW A 7"

PRINT " BEFORE YOU MATCH":PRINT " YCUR 1ST THEROW"
RETURN '

REM DICE THROW

"A=RND (1) :A=INT (5%A) +1
B=RND (1) :B=INT{6*3)+1
NUM=A+R : RETURN

DT, Circumrfexenhce and Area of a Cirxcle

" The program below calculates circumference and area of
R !

_._r:j,.rcl--?s,Aa given the circle's radius. A of

: “he program.

£ 10 CLS:BRINT:INFUT "RADIUS";R

¢ 13 .IF R=0_HEN END

¢ 200 $=2%3.14159*R

C 20 A=0 Lol a@ kR 2

{42 FRINT:PRINT MEERC UM . =1 C

§ =73 PRINT "AREA=":A

\65 AS=THSTRS (1)

TRy GOTOWT0

NOTE

LOW G
Gh

A

]

HIGH

TONE Parar»

'y

(6]
0

51

	Level_II_BASIC
	2012_10_17_20_14_36
	2012_10_17_20_14_39
	2012_10_17_20_14_41
	2012_10_17_20_14_44
	2012_10_17_20_14_47
	2012_10_17_20_14_49
	2012_10_17_20_14_52
	2012_10_17_20_14_55
	2012_10_17_20_14_57
	2012_10_17_20_15_00
	2012_10_17_20_15_03
	2012_10_17_20_15_05
	2012_10_17_20_15_08
	2012_10_17_20_15_11
	2012_10_17_20_15_13
	2012_10_17_20_15_16
	2012_10_17_20_15_19
	2012_10_17_20_15_21
	2012_10_17_20_15_24
	2012_10_17_20_15_27
	2012_10_17_20_15_29
	2012_10_17_20_15_32
	2012_10_17_20_15_35
	2012_10_17_20_15_38
	2012_10_17_20_15_40
	2012_10_17_20_15_43
	2012_10_17_20_15_46
	2012_10_17_20_15_48
	2012_10_17_20_15_51
	2012_10_17_20_15_54
	2012_10_17_20_15_56
	2012_10_17_20_15_59
	2012_10_17_20_16_02
	2012_10_17_20_16_04
	2012_10_17_20_16_07
	2012_10_17_20_16_10
	2012_10_17_20_16_13
	2012_10_17_20_16_15
	2012_10_17_20_16_18
	2012_10_17_20_16_21
	2012_10_17_20_16_23
	2012_10_17_20_16_26
	2012_10_17_20_16_29
	2012_10_17_20_16_31
	2012_10_17_20_16_34
	2012_10_17_20_16_37
	2012_10_17_20_16_40
	2012_10_17_20_16_43
	2012_10_17_20_16_45
	2012_10_17_20_16_48
	2012_10_17_20_16_51
	2012_10_17_20_16_54
	2012_10_17_20_16_56
	2012_10_17_20_16_59
	2012_10_17_20_17_02
	2012_10_17_20_17_04
	2012_10_17_20_17_07
	2012_10_17_20_17_10
	2012_10_17_20_17_13
	2012_10_17_20_17_16
	2012_10_17_20_17_19
	2012_10_17_20_17_21
	2012_10_17_20_17_25
	2012_10_17_20_17_28
	2012_10_17_20_17_32
	2012_10_17_20_17_35
	2012_10_17_20_17_38
	2012_10_17_20_17_40
	2012_10_17_20_17_43
	2012_10_17_20_17_46
	2012_10_17_20_17_49
	2012_10_17_20_17_51
	2012_10_17_20_17_54
	2012_10_17_20_17_57
	2012_10_17_20_17_59
	2012_10_17_20_18_02
	2012_10_17_20_18_05
	2012_10_17_20_18_07
	2012_10_17_20_18_10
	2012_10_17_20_18_13
	2012_10_17_20_18_15
	2012_10_17_20_18_18
	2012_10_17_20_18_21
	2012_10_17_20_18_23
	2012_10_17_20_18_26
	2012_10_17_20_18_29
	2012_10_17_20_18_31
	2012_10_17_20_18_34
	2012_10_17_20_18_50
	2012_10_17_20_18_53

